23-rd Iberoamerican Mathematical Olympiad

September 23-24, 2008

First Day

- 1. The integers $1, 2, ..., 2008^2$ are written one each square of a 2008×2008 board. For every row and column the difference between the maximal and minimal of the numbers is computed. Let *S* be the sum of these 4016 numbers. Find the largest possible value for *S*.
- 2. Given a triangle *ABC*, let *r* be the external bisector of $\angle ABC$. Let *P* and *Q* be the feet of perpendiculars from *A* and *C* to *r*. If $CP \cap BA = M$ and $AQ \cap BC = N$, show that *MN*, *r*, and *AC* pass through the same point.
- 3. Let $P(x) = x^3 + mx + n$ be an integer polynomial that for each $x, y \in \mathbb{Z}$ satisfies: If P(x) - P(y) is divisible by 107, then x - y is divisible by 107 as well. Prove that 107 | m.

Second Day

4. Prove that there are no integers *x* and *y* such that

$$x^{2008} + 2008! = 21^{y}.$$

- 5. Let *X*, *Y*, and *Z* be the points of the sides *BC*, *CA*, and *AB* of $\triangle ABC$. Let *A'*, *B'*, and *C'* be the circumcenters of $\triangle AZY$, $\triangle BXZ$, and *CYX*, respectively. Prove that $4S_{A'B'C'} \ge S_{ABC}$ with equality if and only if *AA'*, *BB'*, and *CC'* pass through the same point.
- 6. *Biribol* is a game played between two teams of 4 people each (teams are not fixed). Find all the possible values of *n* for which it is possible to arrange a tournament with *n* players in such a way that every couple of participants plays a match in opposite teams exactly once.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1