Vietnamese IMO Team Selection Test 1999

First Day – May 9

- 1. Let *p* be an odd prime number such that $2^{h} 1$ is not divisible by *p* for h = 1, 2, ..., p 2. For an even integer a_0 with $p/2 < a_0 < p$, define the sequence (a_n) inductively by $a_{n+1} = p b_n$, where b_n is the largest odd divisor of a_n . Prove that the sequence (a_n) is periodic and find its period.
- 2. Find all polynomials P(x) of degree 1999 with real coefficients such that for some real number a,

$$P(x)^2 - 4 = a(x^2 - 4)P'(x)^2.$$

- 3. Let be given a convex polygon \mathcal{H} . Prove that there exist six distinct points A_1, \ldots, A_6 on its boundary such that:
 - (i) the lines A_1A_2, A_3A_6 and A_4A_5 are parallel;
 - (ii) the line A_3A_6 is equidistant from A_1A_2 and A_4A_5 ;
 - (iii) $A_1A_2 = A_4A_5 = c \cdot A_3A_6$, where 0 < c < 1 is a given constant.

Second Day – May 10

- 4. Define $H(n) = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$. Let (u_n) be a sequence of positive real numbers and $U(n) = u_1 + u_2 + \dots + u_n$. For $n \in \mathbb{N}$, let k_n be the least positive integer such that $H(k_n) \ge U(n)$. Prove that $\lim_{n \to \infty} \frac{k_{n+1}}{k_n}$ exists if and only if $\lim_{n \to \infty} u_n$ exists.
- 5. Let *ABC* be a given triangle. A circle k_a is internally tangent to the circumcircle of *ABC* and touches *AB* and *AC* at M_1 and N_1 , respectively. Points M_2, N_2 and M_3, N_3 are analogously defined. Prove that the segments M_1N_1, M_2N_2 and M_3N_3 have the common midpoint.
- 6. Let *p* be an odd prime number. At each vertex of a regular *p*-gon there is a monkey. A person having *p* peanuts walks around the polygon. At first he gives the first peanut to some monkey. Thereafter, after giving the *k*-th peanut, he starts counting clockwise from his current position and gives the next peanut to the 2k + 1-th monkey.
 - (a) How many monkeys will get no peanut?
 - (b) How many sides of the polygon are there, for which both monkeys at its endpoints will get a peanut?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com