Vietnamese IMO Team Selection Test 1998

First Day – May 14

1. Suppose that a function $f : \mathbb{R} \to \mathbb{R}$ is such that, for every c > 0, there is a polynomial $P_c(x)$ satisfying

 $|f(x) - P_c(x)| \le cx^{1998}$ for all $x \in \mathbb{R}$.

Prove that f is itself a polynomial.

2. Let be given a circle *A* with radius *R* and a circle *B* passing through the center of *A* and touching internally with *A*. Let \mathcal{H} be the family of circles *C* touching *B* externally and *A* internally. Let n > 1 be an integer and C, C' be two circles in \mathcal{H} whose bends (i.e. the reciprocals of radii) are *p* and *p'*. Prove that there is a chain of circles $C = C_1, C_2, \ldots, C_n = C'$ in \mathcal{H} such that C_i touches C_{i+1} for all *i*, if and only if

$$(p-p')^2 = (n-1)^2(2p+2p'-(n-1)^2-8).$$

3. Let m > 3 be an integer and $p_1, p_2, ..., p_n$ be all prime numbers not exceeding *m*. Prove that

$$\sum_{k=1}^{n} \left(\frac{1}{p_k} + \frac{1}{p_k^2} \right) > \ln \ln m.$$

- 4. Find all monic polynomials P with integer coefficients with the property that P(a) is an integer for infinitely many irrational numbers a.
- 5. Led *d* be a positive divisor of $1998^{1998} + 5$. Prove that *d* can be written in the form $d = 2x^2 + 2xy + 3y^2$ ($x, y \in \mathbb{Z}$) if and only if $d \equiv 3$ or $d \equiv 7 \pmod{20}$.
- 6. Suppose that a group of $n \ge 10$ persons has the following properties:
 - (1) Each person is acquainted to at least $\left[\frac{n+2}{3}\right]$ others;
 - (2) For any two persons A and B who are not acquainted, there is a chain of persons A = A₀, A₁,..., A_k = B such that A_i is acquainted to A_{i+1} for each *i*;
 - (3) The persons cannot be arranged in a line so that any two adjacent persons are acquainted.

Prove that this group can be partitioned into two groups such that

- (i) the persons in one group can sit around a table so that any two adjacent persons are acquainted;
- (ii) no the persons in the other group are acquainted.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1