Vietnamese IMO Team Selection Test 1995

1. Let be given a triangle ABC with the lengths of sides BC, CA, AB equal to a, b, c. Distinct points A_1 , A_2 , B_1 , B_2 , C_1 , C_2 not coinciding with A, B, C are chosen so that for some real numbers α , β , γ ,

$$\overrightarrow{A_1A_2} = \frac{\alpha}{a}\overrightarrow{BC}, \quad \overrightarrow{B_1B_2} = \frac{\beta}{b}\overrightarrow{CA}, \quad \overrightarrow{C_1C_2} = \frac{\gamma}{c}\overrightarrow{AB}.$$

Let d_1, d_b, d_c be respectively the radical axes of the circumcircles of the pairs of triangles AB_1C_1 and AB_2C_2 ; BC_1A_1 and BC_2A_2 ; CA_1B_1 and CA_2B_2 . Prove that d_a, d_b and d_c are concurrent if and only if $\alpha a + \beta b + \gamma c = 0$.

2. Find all integers k such that the polynomial

$$P(x) = x^{n+1} + kx^n - 870x^2 + 1945x + 1995$$

is reducible over $\mathbb{Z}[x]$ for infinitely many integers $n \geq 3$.

3. Find all integers a, b, n greater than 1 which satisfy

$$(a^3 + b^3)^n = 4(ab)^{1995}$$
.

- 4. A graph has *n* vertices and $\frac{n^2 3n + 4}{2}$ edges. There is an edge such that, after removing it, the graph becomes unconnected. Find the greatest possible length *k* of a circuit in such a graph.
- 5. For any nonnegative integer n, let f(n) be the greatest integer such that $2^{f(n)} \mid n+1$. A pair (n,p) of nonnegative integers is called *nice* if $2^{f(n)} > p$. Find all triples (n,p,q) of nonnegative integers such that the pairs (n,p), (p,q) and (n+p+q,n) are all nice.
- 6. Consider the function $f(x) = \frac{2x^3 3}{3x^2 3}$.
 - (a) Prove that there is a continuous function $g : \mathbb{R} \to \mathbb{R}$ satisfying f(g(x)) = x and g(x) > x for all real x.
 - (b) Show that there exists a real number a > 1 such that the sequence $a, f(a), f(f(a)), \ldots$ is periodic with the smallest period 1995.

