Vietnamese IMO Team Selection Test 2006

First Day

- 1. In an acute triangle ABC with orthocenter H, the external bisector of $\angle BHC$ meets the sides AB and AC at points D and E respectively. The internal bisector of $\angle BAC$ meets the circumcircle of $\triangle ADE$ again at K. Prove that HK bisects the side BC.
- 2. Find all pairs of integers (n,k) with $n \ge 0, k > 1$ for which the number

$$A = 17^{2006n} + 4 \cdot 17^{2n} + 7 \cdot 19^{5n}$$

is the product of k consecutive positive integers.

3. In space are given 2006 distinct points, no four of which lie on a plane. Every two points are joined by a segment. A natural number *m* is called *good* if each segment can be labelled with a positive integer not exceeding *m* so that, in each triangle, two of the labels are equal and less than the third. Find the smallest good number *m*.

Second Day

1. Prove that for all real numbers $x, y, z \in [1, 2]$ the following inequality holds:

$$(x+y+z)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right) \ge 6\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right).$$

When does equality occur?

- 2. A scalene triangle *ABC* is inscribed in a circle with center *O* and radius *R*. A variable line *l* is perpendicular to *OA* and intersects the rays *AB*, *AC* at points *M*, *N* respectively. The lines *BN* and *CM* intersect at point *K*, and the lines *AK* and *BC* intersect at *P*.
 - (a) Show that the circumcircle of each triangle MNP passes through a fixed point.
 - (b) Let H be the orthocenter of triangle AMN. Denote BC = a, and denote by d the distance from A to the line HK. Prove that $d \le \sqrt{4R^2 a^2}$ and show that the equality holds if and only if l, AO and BC pass through a single point.
- 3. The sequence $(a_n)_{n=0}^{\infty}$ is defined by $a_0 = 1$ and

$$a_{n+1} = \frac{1}{2} \left(a_n + \frac{1}{3a_n} \right).$$

Show that, for each n, $A_n = \frac{3}{3a_n^2 - 1}$ is a perfect square having at least n distinct prime divisors.

1