Vietnamese IMO Team Selection Test 2004

First Day

- 1. For a set $S = \{a_1, a_2, \dots, a_{2004}\}$ with $a_1 < \dots < a_{2004}$, let $f(a_i)$ denote the number of elements of *S* that are coprime with a_i . Suppose that $f(a_1) = \dots = f(a_{2004}) < 2003$. Find the smallest positive integer *k* such that for every set *S* with the described properties, every *k*-element subset of *S* contains two elements that are not coprime.
- 2. Find all real numbers α for which there is a unique function $f : \mathbb{R} \to \mathbb{R}$ satisfying

$$f(x^2 + y + f(y)) = f(x)^2 + \alpha y$$
 for all $x, y \in \mathbb{R}$.

- 3. Two circles Γ_1 and $Gamma_2$ in the plane intersect each other at *A* and *B*. The tangents to Γ_1 at *A* and *B* meet at *K*. Let $M \neq A, B$ be an arbitrary point on Γ_1 . The line *MK* meets Γ_1 again at *C*, and the lines *MA* and *CA* meet Γ_2 again at *P* and *Q*, respectively.
 - (a) Prove that the midpoint of PQ lies on the line MC.
 - (b) Show that all lines PQ pass through a single point as M varies.

Second Day

4. The sequence (x_n) is defined by $x_1 = 603$, $x_2 = 102$ and

$$x_{n+2} = x_n + x_{n+1} + 2\sqrt{x_n x_{n+1}} - 2$$
 for $n \in \mathbb{N}$.

- (a) Prove that x_n is a positive integer for all n.
- (b) Prove that there are infinitely many terms x_n whose decimal representations end with 2003.
- (c) Prove that there is no x_n whose decimal representation ends with 2004.
- 5. Let $A_1, B_1, C_1, D_1, E_1, F_1$ be the midpoints of the sides *AB*, *BC*, *CD*, *DE*, *EF*, *FA* respectively of a hexagon *ABCDEF*. Let *p* be the perimeter of hexagon *ABCDEF* and p_1 be that of $A_1B_1C_1D_1E_1F_1$. Suppose that the hexagon $A_1B_1C_1D_1E_1F_1$ has equal angles. Prove that $p \ge \frac{2}{\sqrt{3}}p_1$. When does equality hold?
- 6. A finite set *S* of positive integers is such that its greatest and smallest element are coprime. For each $n \in \mathbb{N}$, let S_n denote the set of natural numbers which can be represented as a sum of at most *n* elements of *S* (not necessarily different). Prove that if *a* is the greatest element of *S*, then there is an integer *b* such that $|S_n| = an + b$ for all sufficiently large *n*.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com