Vietnamese IMO Team Selection Test 2003

First Day

1. Four positive integers m, n, p, q with p < m and q < n are given. Consider the points A(0,0), B(p,0), C(m,q) and D(m,n) in the coordinate plane. Consider the paths f from A to D and g from B to C, consisting of unit steps going to the right or upwards. Let S be the number of couples (f,g) such that f and g have no common points. Prove that

$$S = \binom{m+n}{n} \binom{m+q-p}{q} - \binom{m+q}{q} \binom{m+n-p}{n}.$$

- 2. Let A_0, B_0, C_0 respectively be the midpoints of the altitudes AH, BK and CL of a non-equilateral triangle ABC. Let O be the circumcenter and I the incenter of the triangle. The incircle of $\triangle ABC$ touches BC at D, CA at E, and AB at F. Show that the four lines A_0D, B_0E, C_0F and OI are concurrent.
- 3. A function f satisfies $f(0,0) = 5^{2003}$, f(0,n) = 0 for all $n \in \mathbb{N}$, and

$$f(m,n) = f(m-1,n) - 2\left[\frac{f(m-1,n)}{2}\right] + \left[\frac{f(m-1,n-1)}{2}\right] + \left[\frac{f(m-1,n+1)}{2}\right]$$

for all integers m > 0 and n. Show that there exists a positive integer M such that f(M,n) = 1 for all integers n with $|n| \le \frac{(5^{2003} - 1)}{2}$ and f(M,n) = 0 for all other integers n.

Second Day

- 4. Let M, N, P be the midpoints of the sides BC, CA, AB respectively of a triangle ABC, and let M_1, N_1, P_1 be the points on the perimeter of the triangle such that each of the lines MM_1, NN_1, PP_1 bisects the perimeter.
 - (a) Prove that the lines MM_1 , NN_1 , PP_1 have a common point K.
 - (b) Show that at least one of the ratios KA/BC, KB/CA, KC/AB is not less than $1/\sqrt{3}$.
- 5. Let *A* be the set of all permutations of the numbers 1, 2, ..., 2003 that fix no proper subset of $\{1, ..., 2003\}$. For each permutation $a = (a_1, a_2, ..., a_{2003}) \in A$, denote

$$d(a) = \sum_{k=1}^{2003} (a_k - k)^2.$$

- (a) Find the minimum value d_0 of d(a).
- (b) Find all permutations $a \in A$ for which $d(a) = d_0$.
- 6. Prove that for any positive integer n, the number $2^n + 1$ has no prime divisors of the form 8k 1, where $k \in \mathbb{N}$.

