First Day – Hanoi, May 8

1. The sequence of integers (a_n) is defined by $a_0 = 1$ and

 $a_n = a_{n-1} + a_{[n/3]},$ for every $n \in \mathbb{N}$.

Prove that for each prime number $p \le 13$ there exists k such that a_k is divisible by p.

- 2. Two circles intersect each other at points *A* and *B*. Let *l* be a common tangent of the two circles, touching them at *P* and *T*. The tangents to the circumcircle of triangle *APT* at *P* and *T* meet at *S*. Let *H* be the reflection of point *B* across the line *l*. Prove that *A*,*S*,*H* are collinear.
- 3. There are 42 members in a club. Among any 31 of them, there is a pair consisting of a man and a woman who know each other. Prove that there are at least 12 disjoint man-woman pairs who know each other.

Second Day – Hanoi, May 9

4. Let x, y, z be positive real numbers such that $21xy + 2yz + 8zx \le 12$. Find the minimum value of

$$f(x, y, z) = \frac{1}{x} + \frac{2}{y} + \frac{3}{z}$$

- 5. Let n > 1 be an integer. Denote by \mathscr{A} the set of points (x, y, z), where $x, y, z \in \{1, 2, ..., n\}$. Some points in \mathscr{A} are colored in such a manner that if point $M(x_0, y_0, z_0)$ is colored, then point $N(x_1, y_1, z_1)$ with $x_1 \le x_0$, $y_1 \le y_0$, $z_1 \le z_0$ is not colored. Find, with proof, the maximum possible number of colored points.
- 6. Let $(a_n)_{n \in \mathbb{N}}$ be a sequence of positive integers satisfying the condition

$$0 < a_{n+1} - a_n \le 2001$$
 for all $n \in \mathbb{N}$.

Prove that there exist infinitely many pairs of positive integers (p,q) such that p < q and a_p divides a_q .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com