Vietnamese IMO Team Selection Test 2000

First Day

- 1. Two circles C_1 and C_2 intersect at points P and Q. Their common tangent, closer to P than to Q, touches C_1 at A and C_2 at B. The tangents to C_1 and C_2 at P meet the other circle at points $E \neq P$ and $F \neq P$, respectively. Let H and K be the points on the rays AF and BE respectively such that AH = AP and BK = BP. Prove that A, H, Q, K, B lie on a circle.
- 2. Let *k* be a given positive integer. Define $x_1 = 1$ and, for each n > 1, set x_{n+1} to be the smallest positive integer not belonging to the set

$$\{x_i, x_i + ik \mid i = 1, \dots, n\}$$

Prove that there is a real number *a* such that $x_n = [an]$ for all $n \in \mathbb{N}$.

3. Two players alternately replace the stars in the expression

 $x^{2000} + x^{1999} + \dots + x^{1}$

by real numbers. The player who makes the last move loses if the resulting polynomial has a real root t with |t| < 1, and wins otherwise. Give a winning strategy for one of the players.

Second Day

4. Let *a*,*b*,*c* be pairwise coprime natural numbers. A positive integer *n* is said to be *stubborn* if it cannot be written in the form

n = bcx + cay + abz, for some $x, y, z \in \mathbb{N}$.

Determine the number of stubborn numbers.

- 5. Let a > 1 and r > 1 be real numbers.
 - (a) Prove that if $f : \mathbb{R}^+ \to \mathbb{R}^+$ is a function satisfying the conditions
 - (i) $f(x)^2 \le ax^r f(x/a)$ for all x > 0,
 - (ii) $f(x) < 2^{2000}$ for all $x < 1/2^{2000}$,
 - then $f(x) < x^r a^{1-r}$ for all x > 0.
 - (b) Construct a function $f : \mathbb{R}^+ \to \mathbb{R}^+$ satisfying condition (i) such that for all x > 0, $f(x) > x^r a^{1-r}$.
- 6. A collection of 2000 congruent circles is given on the plane such that no two circles are tangent and each circle meets at least two other circles. Let *N* be the number of points that belong to at least two of the circles. Find the smallest possible value of *N*.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com