36-th Vietnamese Mathematical Olympiad 1998

First Day – March 13

1. Let $a \ge 1$ be a real number. A sequence (x_n) is defined by

$$x_1 = a;$$
 $x_{n+1} = 1 + \ln\left(\frac{x_n^2}{1 + \ln x_n}\right)$ for all $n \ge 1$.

Prove that the sequence x_n has a finite limit and find this limit.

- 2. Let *ABCD* be a tetrahedron and AA_1, BB_1, CC_1, DD_1 be diameters of its circumsphere. Let A_0, B_0, C_0, D_0 be the centroids of the triangles *BCD*, *CDA*, *DAB*, *ABC*, respectively. Prove that:
 - (a) the lines A_0A_1, B_0B_1, C_0C_1 and D_0D_1 have a common point F;
 - (b) the line passing through F and the midpoint of an edge is perpendicular to the opposite edge.
- 3. The sequence (a_n) is defined recursively by $a_0 = 20$, $a_1 = 100$ and $a_{n+2} = 4a_{n+1} + 5a_n + 20$ for $n \ge 0$. Find the smallest positive integer *h* for which $a_{n+h} a_h$ is divisible by 1998 for all *n*.

- 4. Prove that there does not exist a sequence $(x_n)_{n=1}^{\infty}$ of real numbers satisfying the following two conditions:
 - (i) $|x_n| \leq 0.666$ for all $n \in \mathbb{N}$;

(ii)
$$|x_n - x_m| \ge \frac{1}{n(n+1)} + \frac{1}{n(n+1)}$$
 whenever $m \ne n$.

5. If x, y are real numbers, determine the minimum value of the expression

$$F(x,y) = \frac{\sqrt{(x+1)^2 + (y-1)^2}}{\sqrt{(x+2)^2 + (y+2)^2}} + \frac{\sqrt{(x-1)^2 + (y+1)^2}}{\sqrt{(x+2)^2 + (y+2)^2}}.$$

6. Find all positive integers *n* for which there exists a polynomial P(x) with real coefficients satisfying

$$P(x^{1998} - x^{-1998}) = x^n - x^{-n}$$
 for all real $x \neq 0$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1