34-th Vietnamese Mathematical Olympiad 1996

First Day

1. Solve the system of equations:

$$\sqrt{3x}\left(1+\frac{1}{x+y}\right) = 2, \qquad \sqrt{7y}\left(1-\frac{1}{x+y}\right) = 4\sqrt{2}.$$

- 2. Let be given a trihedral angle *Sxyz*. A plane π , not passing through *S*, cuts *Sx*, *Sy*, *Sz* at *A*, *B*, *C* respectively. On the plane π , outside $\triangle ABC$, are constructed triangles *DAB*, *EBC*, *FCA* congruent to *SAB*, *SBC*, *SCA* respectively. A sphere τ inside *Sxyz*, but outside *SABC*, touches the planes containing the faces of *SABC*. Prove that the point of tangency between τ and π is the circumcenter of triangle *DEF*.
- 3. Let k,n be integers with $1 \le k \le n$. Find the number of ordered k-tuples (a_1, a_2, \ldots, a_k) of distinct elements of the set $\{1, 2, \ldots, n\}$ such that:
 - (i) there are indices s, t such that s < t and $a_s > a_t$;
 - (ii) there exists *s* such that $a_s s$ is odd.

Second Day

4. Find all functions $f : \mathbb{N} \to \mathbb{N}$ satisfying

$$f(n) + f(n+1) = f(n+2)f(n+3) - 1996$$
 for all $n \in \mathbb{N}$.

- 5. If *ABC* is a triangle with *BC* = 1 and $\angle A = \alpha$, find the shortest distance betwen its incenter and its centroid. If $f(\alpha)$ denotes this shortest distance, find the greatest value of $f(\alpha)$ when $\pi/3 < \alpha < \pi$.
- 6. Suppose that a, b, c, d are nonnegative real numbers satisfying

2(ab+bc+cd+da+ac+bd)+abc+bcd+cda+dab=16.

Prove that $3(a+b+c+d) \ge 2(ab+bc+cd+da+ac+bd)$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1