First Day

1. A tetrahedron ABCD is such that

$$\angle ACD + \angle BCD = \angle BAC + \angle CAD + \angle DAB =$$
$$= \angle ABC + \angle CBD + \angle DBA = 180^{\circ}.$$

Given that $\angle ACB = \alpha$ and AC + CB = k, compute the total area of the surface of the tetrahedron *ABCD*.

- 2. For a positive number n, f(n) is the number of divisors of n which are congruent to 1 or -1 modulo 10, and g(n) is the number of divisors which are congruent to 3 or -3 modulo 10. Prove that $f(n) \ge g(n)$.
- 3. Three real sequences (a_n) , (b_n) , (c_n) are constructed as follows:

(i)
$$a_0 = a, b_0 = b, c_0 = c$$
, where a, b, c are given real numbers

(ii)
$$a_{k+1} = a_k + \frac{2}{b_k + c_k}$$
, $b_{k+1} = b_k + \frac{2}{c_k + a_k}$, $c_{k+1} = c_k + \frac{2}{a_k + b_k}$ for all k.

Prove that a_n tends to infinity as n tends to infinity.

Second Day

- 4. The field of a 1991×1992 board in the *m*-th row and *n*-th column is denoted as (m,n). We color some squares of the board as follows. At first, we color fields (r,s), (r+1,s+1) and (r+2,s+1), where r,s are given numbers with $1 \le r \le 1989$ and $1 \le s \le 1991$. Afterwards, at each step we color red three yet uncolored fields which are in the same row or column. Can we color all the fields of the board according to this rule?
- 5. The two diagonals of a rectangle \mathscr{H} form an angle not exceeding 45°. The rectangle \mathscr{H} , when rotated around its center for an angle x ($0 \le x < 360^\circ$), maps onto a triangle \mathscr{H}_x . Find x for which the area of the intersection of \mathscr{H} and \mathscr{H}_x is the greatest possible.
- 6. Let $n_1 < n_2 < \dots < n_k$ be positive integers. Prove that all real roots of the polynomial $P(x) = 1 + x^{n_1} + x^{n_2} + \dots + x^{n_k}$ are greater than $\frac{1 \sqrt{5}}{2}$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com