25-th Vietnamese Mathematical Olympiad 1987

First Day

1. Let $u_1, u_2, \ldots, u_{1987}$ be an arithmetic progression with $u_1 = \pi/1987$ and the common difference $\pi/3974$. Evaluate

$$S = \sum_{\varepsilon_i \in \{-1,1\}} \cos(\varepsilon_1 u_1 + \varepsilon_2 u_2 + \dots + \varepsilon_{1987} u_{1987}).$$

2. Sequences (x_n) and (y_n) are constructed as follows:

$$x_0 = 365,$$
 $x_{n+1} = x_n(x_n^{1986} + 1) + 1622,$
 $y_0 = 16,$ $y_{n+1} = y_n(y_n^3 + 1) - 1952,$ for all $n \ge 0.$

Prove that $x_n \neq y_k$ for any positive integers n, k.

3. Let be given $n \ge 2$ lines on a plane, not all concurrent and no two parallel. Prove that there is a point which belongs to exactly two of the given lines.

Second Day

4. Let a_1, a_2, \ldots, a_n be positive real numbers $(n \ge 2)$ whose sum is S. Show that

$$\sum_{i=1}^{n} \frac{a_i^{2^k}}{(S-a_i)^{2^t-1}} \ge \frac{S^{1+2^k-2^t}}{(n-1)^{2^t-1}n^{2^k-2^t}}$$

for any nonnegative integers k, t with $k \ge t$. When does equality occur?

5. Let $f:[0,+\infty) \to \mathbb{R}$ be a differentiable function. Suppose that

$$|f(x)| \le 5$$
 and $f(x)f'(x) \ge \sin x$ for all $x \ge 0$.

Prove that there exists $\lim_{x \to +\infty} f(x)$.

6. Prove that among any five distinct rays Ox, Oy, Oz, Ot, Or in space there exist two which form an angle less than or equal to 90°.

