22-nd Vietnamese Mathematical Olympiad 1984

First Day

1. (a) Find a polynomial with integer coefficients of the smallest degree having $\sqrt{2} + \sqrt[3]{3}$ as a root.

(b) Solve
$$1 + \sqrt{1 + x^2} \left(\sqrt{(1 + x)^3} - \sqrt{(1 - x)^3} \right) = 2\sqrt{1 - x^2}$$
.

- 2. The sequence (u_n) is defined by $u_1 = 1$, $u_2 = 2$ and $u_{n+1} = 3u_n u_{n-1}$ for $n \ge 2$. Set $v_n = \sum_{k=1}^n \operatorname{arccot} u_k$. Compute $\lim_{n \to \infty} v_n$.
- 3. A square *ABCD* of side length 2a is given on a plane Π . Let *S* be a point on the ray *Ax* perpendicular to Π such that AS = 2a.
 - (a) Let $M \in BC$ and $N \in CD$ be two variable points.
 - i. Find the positions of M, N such that $BM + DN \ge 3/2$, planes *SAM* and *SMN* are perpendicular and $BM \cdot DN$ is minimum.
 - ii. Find *M* and *N* such that $\angle MAN = 45^{\circ}$ and the volume of *SAMN* attains an extremum value. Find these values.
 - (b) Let Q be a point such that $\angle AQB = \angle AQD = 90^\circ$. The line DQ intersects the plane π through AB perpendicular to Π at Q'.
 - i. Find the locus of Q'.
 - ii. Let \mathcal{K} be the locus of points Q and let CQ meet \mathcal{K} again at R. Let DR meets π at R'. Prove that $\sin^2 Q'DB + \sin^2 R'DB$ is independent of Q.

Second Day

- 4. (a) Let x, y be integers, not both zero. Find the minimum possible value of $|5x^2 + 11xy 5y^2|$.
 - (b) Find all positive real numbers *t* such that $\frac{9t}{10} = \frac{[t]}{t [t]}$.
- 5. Given two real numbers a, b with $a \neq 0$, find all polynomials P(x) which satisfy

$$xP(x-a) = (x-b)P(x)$$

- 6. Consider a trihedral angle *Sxyz* with $\angle xSz = \alpha$, $\angle xSy = \beta$ and $\angle ySz = \gamma$. Let *A*,*B*,*C* denote the dihedral angles at edges *y*,*z*,*x* respectively.
 - (a) Prove that $\frac{\sin \alpha}{\sin A} = \frac{\sin \beta}{\sin B} = \frac{\sin \gamma}{\sin C}$.
 - (b) Show that $\alpha + \beta = 180^{\circ}$ if and only if $\angle A + \angle B = 180^{\circ}$.
 - (c) Assume that $\alpha = \beta = \gamma = 90^\circ$. Let $O \in Sz$ be a fixed point such that SO = a and let M, N be variable points on x, y respectively. Prove that $\angle SOM + \angle SON + \angle MON$ is constant and find the locus of the incenter of *OSMN*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com