43-rd Vietnamese Mathematical Olympiad 2005

1. The real numbers *x* and *y* satisfy the condition

$$x - 3\sqrt{x+1} = 3\sqrt{y+2} - y.$$

Find the maximum and minimum values of P = x + y.

- 2. Points *A* and *B* are given on a circle with center *O* and radius *R* so that *O* does not lie on *AB*. Let *C* be a variable point on the circle, distinct from *A* and *B*. Circle *O*₁ through *A* touches *BC* at *C*, and circle *O*₂ through *B* touches *AC* at *C*. Circles *O*₁ and *O*₂ meet at *C* and *D*.
 - (a) Prove that $CD \leq R$.
 - (b) Prove that all lines CD pass through a fixed point.
- 3. Let $A_1A_2...A_8$ be a convex octagon with no three diagonals concurrent. We call intersections of its diagonals *buttons*, and convex quadrilaterals determined by four vertices of the octagon *sub-quadrilaterals*. Find the smallest n for which it is possible to color n buttons so that for all distinct $i,k \in \{1,...,8\}$ number s(i,k) is the same, where s(i,k) denotes the number of sub-quadrilaterals with two vertices at A_i, A_k whose diagonals meet at a colored button.

Second Day

4. Find all functions $f: \mathbb{R} \to \mathbb{R}$ satisfying the condition

$$f(f(x-y)) = f(x)f(y) - f(x) + f(y) - xy \quad \text{for all } x, y.$$

- 5. Find all triples of natural numbers (x, y, n) such that $\frac{x! + y!}{n!} = 3^n$.
- 6. The sequence (x_n) is defined by $x_1 = a \in \mathbb{R}$ and

$$x_{n+1} = 3x_n^3 - 7x_n^2 + 5x_n$$
 for $n = 1, 2, 3, ...$

Find all a for which (x_n) has a finite limit when $n \to \infty$ and determine that limit.

