39-th Vietnamese Mathematical Olympiad 2001

First Day – March 12

- 1. Two circles (O_1) and (O_2) intersect at *A* and *B*, and their common tangent touches (O_1) at P_1 and (O_2) at P_2 . Let M_1 and M_2 be the orthogonal projections of P_1 and P_2 on the line O_1O_2 . The line AM_1 cuts (O_1) again at N_1 , and AM_2 cuts (O_2) again at N_2 . Prove that the points B, N_1, N_2 are collinear.
- 2. Let be given a positive integer *n* and two coprime integers *a*, *b* greater than 1. Let *p* and *q* be two odd divisors of $a^{6^n} + b^{6^n}$ different from 1. Find the remainder of $p^{6^n} + q^{6^n}$ when divided by $6 \cdot 12^n$.
- 3. Given real numbers *a*, *b*, the sequence $(x_n)_{n=0}^{\infty}$ is defined by $x_0 = a$ and

 $x_{n+1} = x_n + b \sin x_n$ for every $n \ge 0$.

- (a) If b = 1, prove that for every *a*, the sequence (x_n) has a finite limit when $n \to \infty$, and find this limit.
- (b) Prove that for every b > 2 there exists a real number *a* for which the sequence (x_n) does not have a finite limit when $n \to \infty$.

Second Day – March 13

4. Let x, y, z be positive real numbers that satisfy:

$$\frac{1}{\sqrt{2}} \le z < \frac{1}{2} \min\{x\sqrt{2}, y\sqrt{3}\};\\ x + z\sqrt{3} \ge \sqrt{6};\\ y\sqrt{3} + z\sqrt{10} \ge 2\sqrt{5}.$$

Find the maximum value of $P(x, y, z) = \frac{1}{x^2} + \frac{2}{y^2} + \frac{3}{z^2}$.

5. Consider the function $g(x) = \frac{2x}{1+x^2}$. Find all continuous functions $f: (-1,1) \rightarrow \mathbb{R}$ that satisfy

$$(1-x^2)f(g(x)) = (1+x^2)^2 f(x)$$
 for all $x \in (-1,1)$.

6. Let n ≥ 1 be a given integer. Consider a permutation (a₁, a₂,..., a_{2n}) of the first 2n positive integers such that the numbers |a_{i+1} - a_i| are distinct for i = 1,2,...,2n-1. Prove that a₁ - a_{2n} = n if and only if 1 ≤ a_{2k} ≤ n for every k = 1,2,...,n.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com