38-th Vietnamese Mathematical Olympiad 2000

First Day

1. Given a real number c > 0 and an initial value x_0 with $0 < x_0 < c$, a sequence (x_n) of real numbers is defined by

$$x_{n+1} = \sqrt{c - \sqrt{c + x_n}}$$
 for $n \ge 0$.

Find all values of *c* such that for each initial value x_0 in (0, c), the sequence (x_n) is defined for all *n* and has a finite limit.

- 2. Two circles Ω_1 and Ω_2 with respective centers O_1, O_2 are given on a plane. Let M_1, M_2 be points on Ω_1, Ω_2 respectively, and let the lines O_1M_1 and O_2M_2 meet at Q. Starting simultaneously from these positions, the points M_1 and M_2 move clockwise on their own circles with the same angular velocity.
 - (a) Determine the locus of the midpoint of M_1M_2 .
 - (b) Prove that the circumcircle of $\triangle M_1 Q M_2$ passes through a fixed point.
- 3. Consider the polynomial $P(x) = x^3 + 153x^2 111x + 38$.
 - (a) Prove that there are at least nine integers *a* in the interval $[1, 3^{2000}]$ for which P(a) is divisible by 3^{2000} .
 - (b) Find the number of integers a in $[1, 3^{2000}]$ with the property from (a).

Second Day

4. For every integer $n \ge 3$ and any given angle α with $0 < \alpha < \pi$, let

$$P_n(x) = x^n \sin \alpha - x \sin n\alpha + \sin(n-1)\alpha$$

- (a) Prove that there is a unique polynomial of the form $f(x) = x^2 + ax + b$ which divides $P_n(x)$ for every $n \ge 3$.
- (b) Prove that there is no polynomial g(x) = x + c which divides $P_n(x)$ for every $n \ge 3$.
- 5. Find all integers $n \ge 3$ such that there are *n* points $A_1, A_2, ..., A_n$ in space, with no three on a line and no four on a circle, such that all the circumcircles of the triangles $A_iA_jA_k$ are congruent.
- 6. Let P(x) be a nonzero polynomial such that, for all real numbers x,

$$P(x^2 - 1) = P(x)P(-x)$$

Determine the maximum possible number of real roots of P(x).

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1