## 5-th Taiwanese Mathematical Olympiad 1996

Time: 4.5 hours each day.

## First Day

- 1. Suppose that  $\alpha, \beta, \gamma$  are real numbers in the interval  $(0, \pi/2)$  such that  $\alpha + \beta + \gamma = \pi/4$  and  $\tan \alpha = \frac{1}{a}$ ,  $\tan \beta = \frac{1}{b}$ ,  $\tan \gamma = \frac{1}{c}$ , where a, b, c are positive integers. Please determine the values of a, b, c.
- 2. Let  $0 < a \le 1$  be a real number and let  $a \le a_j \le \frac{1}{a}$  for j = 1, 2, ..., 1996. Show that for any nonnegative real numbers  $\lambda_j$  (j = 1, 2, ..., 1996) with  $\sum_{j=1}^{1996} \lambda_j = 1$  it holds that

 $\left(\sum_{i=1}^{1996} \lambda_i a_i\right) \left(\sum_{j=1}^{1996} \frac{\lambda_j}{a_j}\right) \leq \left(a + \frac{1}{a}\right)^2.$ 

3. Let be given points A and B on a circle, and let P be a variable point on that circle. Let point M be determined by P as the point that is either on segment PA with AM = MP + PB or on segment PB with AP + MP = PB. Find the locus of points M.

## Second Day

- 4. Show that for any real numbers  $a_3, a_4, \dots, a_{85}$ , not all the roots of the equation  $a_{85}x^{85} + \dots + a_3x^3 + 3x^2 + 2x + 1$  are real.
- 5. Determine integers  $a_1, a_2, \dots, a_{99} = a_0$  satisfying  $|a_{k-1} a_k| \ge 1996$  for all  $k = 1, 2, \dots, 99$ , such that the number

$$m = \max\{|a_{k-1} - a_k| \mid k = 1, 2, \dots, 99\}$$

is minimum possible, and find the minimum value  $m^*$  of m.

- 6. Let  $(q_n)_{n=0}^{\infty}$  be a sequence of integers such that:
  - (i) for any m > n, m n divides  $q_m q_n$ , and
  - (ii)  $|q_n| \le n^{10}$  for all  $n \ge 0$ .

Prove that there exists a polynomial Q(x) such that  $q_n = Q(n)$  for all n.

