3-rd Taiwanese Mathematical Olympiad 1994

Time: 4.5 hours each day.

First Day – Taipei, April 14, 1994

- 1. Let *ABCD* be a quadrilateral with AD = BC and $\angle A + \angle B = 120^{\circ}$. Let us draw equilateral triangles *ACP*, *DCQ*, *DBR* away from *AB*. Prove that the points *P*,*Q*,*R* are collinear.
- 2. Let a, b, c be positive real numbers and α be any real number. Denote

$$f(\alpha) = abc(a^{\alpha} + b^{\alpha} + c^{\alpha}),$$

$$g(\alpha) = a^{\alpha+2}(b+c-a) + b^{\alpha+2}(c+a-b) + c^{\alpha+2}(a+b-c).$$

Determine $|f(\alpha) - g(\alpha)|$.

3. Suppose *a* is a positive integer such that $5^{1994} - 1 \mid a$. Prove that the expression of *a* in the base 5 contains at least 1994 nonzero digits.

4. Prove that there are infinitely many positive integers *n* with the following property: For any *n* integers a_1, a_2, \ldots, a_n which form in arithmetic progression, both the mean and the standard deviation of the set $\{a_1, \ldots, a_n\}$ are integers.

Remark. The mean and standard deviation of the set $\{x_1, \ldots, x_n\}$ are defined by $\overline{x} = \frac{a_1 + \cdots + a_n}{n}$ and $\sqrt{\frac{\sum (x_i - \overline{x})^2}{n}}$, respectively.

5. Given $X = \{0, a, b, c\}$, let $M(X) = \{f \mid f : X \to X\}$ denote the set of all functions from *X* into itself. An addition table on *X* is given as follows:

+	0	а	b	С
0	0	а	b	С
a	а	0	С	b
b	b	С	0	a
С	С	b	а	0

- (a) If $S = \{f \in M(X) \mid f(x+y+x) = f(x) + f(y) + f(x) \text{ for all } x, y \in X\}$, find the number of elements of *S*.
- (b) If $I = \{f \in M(X) \mid f(x+x) = f(x) + f(x) \text{ for all } x \in X\}$, find the number of elements of *I*.

6. For $-1 \le x \le 1$ and $n \in \mathbb{N}$, define

$$T_n(x) = \frac{1}{2^n} \left[\left(x + \sqrt{1 - x^2} \right)^n + \left(x - \sqrt{1 - x^2} \right)^n \right].$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- (a) Prove that $T_n(x)$ is a monic polynomial of degree *n* in *x* and that the maximum value of $|T_n(x)|$ is $1/2^{n-1}$.
- (b) Suppose that $p(x) = x^n + a_{n-1}x^{n-1} + \dots + a_0$ is a monic polynomial of degree *n* with real coefficients such that $p(x) > -1/2^{n-1}$ for all $x, -1 \le x \le 1$. Prove that there exists $x_0, -1 \le x_0 \le 1$ such that $p(x_0) \ge 1/2^{n-1}$.

www.imo.org.yu

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com