10-th Taiwanese Mathematical Olympiad 2001

Time: 4.5 hours each day.

1. Let $A = \{a_1, a_2, ..., a_n\}$ be a set of $n \ge 3$ distinct integers, and let *m* and *M* be the minimum and maximum element of *A*, respectively. Suppose that there exists a polynomial p(x) with integer coefficients such that

m < p(a) < M for all $a \in A$, and p(m) < p(a) for all $a \in A \setminus \{m, M\}$.

Prove that $n \le 5$ and that there exist two integers *b* and *c* such that each element of *A* is a solution of the equation $p(x) + x^2 + bx + c = 0$.

- 2. Let a_1, a_2, \ldots, a_{15} be positive integers for which the number $a_k^{k+1} a_k$ is not divisible by 17 for any $k = 1, \ldots, 15$. Show that there are integers b_1, b_2, \ldots, b_{15} such that
 - (i) $b_m b_n$ is not divisible by 17 for $1 \le m < n \le 15$, and
 - (ii) each b_i is a product of one or more terms of (a_i) .
- 3. Let $A_1, A_2, ..., A_n$ be distinct subsets of $\{1, 2, ..., n\}$. Prove that there is an element *x* of *S* such that the subsets $A_1 \setminus \{x\}, ..., A_n \setminus \{x\}$ are also distinct.

- 4. Let Γ be the circumcircle of a fixed triangle *ABC*, and let *M* and *N* be the midpoints of the arcs *BC* and *CA*, respectively. For any point *X* on the arc *AB*, let O_1 and O_2 be the incenters of $\triangle XAC$ and $\triangle XBC$, and let the circumcircle of $\triangle XO_1O_2$ intersect Γ at *X* and *Q*. Prove that triangles QNO_1 and QMO_2 are similar, and find all possible locations of point *Q*.
- 5. Let x and y be distinct real numbers, and let f(n) be defined by

 $f(n) = x^{n-1} + x^{n-2}y + x^{n-3}y^2 + \dots + y^{n-1}, \quad n \in \mathbb{N}.$

Prove that if f(m), f(m+1), f(m+2), f(m+3) are integers for some $m \in \mathbb{N}$, then f(n) is an integer for each n.

6. Suppose that *n* − 1 items *A*₁,*A*₂,...,*A*_{*n*−1} have already been arranged in the increasing order, and that another item *A*_{*n*} is to be inserted to preserve the order. What is the expected number of comparisons necessary to insert *A*_{*n*}?

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com