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1. An integerx has the property that the sums of the digits ofx and of 3x are the
same. Prove thatx is divisible by 9.

2. A railway line is divided into ten sections by the stationsA,B,C,D,E,F ,
G,H, I,J,K. The length of each section is an integer number of kilometers and
the distnace betweenA andK is 56km. A trip along two successive sections
never exceeds 12km, but a trip along three successive sections is at least 17km.
What is the distance betweenB andG?

︷ ︸︸ ︷

A B C D E F G H I J K

3. Assume thata andb are integers. Prove that the equationa2 + b2 + x2 = y2 has
an integer solutionx,y if and only if the productab is even.

4. To each pair of nonzero real numbersa andb a real numbera ∗ b is assigned so
that a ∗ (b ∗ c) = (a ∗ b)c and a ∗ a = 1 for all a,b,c.

Solve the equationx∗36= 216.

5. A triangle with sidesa,b,c and perimeter 2p is given. Is possible, a new triangle
with sidesp−a, p−b, p−c is formed. The process is then repeated with the new
triangle. For which original triangles can this process be repeated indefinitely?

6. For real numbersa andb definef (x) =
1

ax + b
. For whicha andb are there three

distinct real numbersx1,x2,x3 such thatf (x1) = x2, f (x2) = x3 and f (x3) = x1?
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