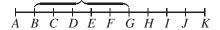
Swedish Mathematical Competition 1993

Final Round November 20, 1993

- 1. An integer *x* has the property that the sums of the digits of *x* and of 3*x* are the same. Prove that *x* is divisible by 9.
- 2. A railway line is divided into ten sections by the stations A,B,C,D,E,F,G,H,I,J,K. The length of each section is an integer number of kilometers and the distnace between A and K is 56km. A trip along two successive sections never exceeds 12km, but a trip along three successive sections is at least 17km. What is the distance between B and G?



- 3. Assume that a and b are integers. Prove that the equation $a^2 + b^2 + x^2 = y^2$ has an integer solution x, y if and only if the product ab is even.
- 4. To each pair of nonzero real numbers a and b a real number a*b is assigned so that a*(b*c)=(a*b)c and a*a=1 for all a,b,c.

Solve the equation x * 36 = 216.

- 5. A triangle with sides a,b,c and perimeter 2p is given. Is possible, a new triangle with sides p-a,p-b,p-c is formed. The process is then repeated with the new triangle. For which original triangles can this process be repeated indefinitely?
- 6. For real numbers a and b define $f(x) = \frac{1}{ax+b}$. For which a and b are there three distinct real numbers x_1, x_2, x_3 such that $f(x_1) = x_2$, $f(x_2) = x_3$ and $f(x_3) = x_1$?

