Swedish Mathematical Competition 1989

Final Round

November 18, 1989

- 1. Let *n* be a positive integer. Prove that the numbers $n^2(n^2+2)^2$ and $n^4(n^2+2)^2$ are written in base $n^2 + 1$ with the same digits but in opposite order.
- 2. Find all continuous functions f such that $f(x) + f(x^2) = 0$ for all real numbers x.
- 3. Find all positive integers n such that $n^3 18n^2 + 115n 391$ is the cube of a positive integer.
- 4. Let *ABCD* be a regular tetrahedron. Find the positions of point *P* on the edge *BD* such that the edge *CD* is tangent to the sphere with diameter *AP*.
- 5. Assume $x_1, x_2, ..., x_5$ are positive numbers such that $x_1 < x_2$ and x_3, x_4, x_5 are all greater than x_2 . Prove that if $\alpha > 0$, then

$$\frac{1}{(x_1+x_3)^{\alpha}} + \frac{1}{(x_2+x_4)^{\alpha}} + \frac{1}{(x_2+x_5)^{\alpha}} < \frac{1}{(x_1+x_2)^{\alpha}} + \frac{1}{(x_2+x_3)^{\alpha}} + \frac{1}{(x_4+x_5)^{\alpha}}.$$

6. On a circle 4n points are chosen $(n \ge 1)$. The points are alternately colored yellow and blue. The yellow points are divided into n pairs and the points in each pair are connected with a yellow line segment. In the same manner the blue points are divided into n pairs and the points in each pair are connected with a blue segment. Assume that no three of the segments pass through a single point. Show that there are at least n intersection points of blue and yellow segments.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com