Swedish Mathematical Competition 1984

Final Round November 17, 1984

- 1. Let *A* and *B* be two points inside a circle *C*. Show that there exists a circle that contains *A* and *B* and lies completely inside *C*.
- 2. The squares in a 3×7 grid are colored either blue or yellow. Consider all $m \times n$ rectangles in this grid, where $m \in \{2,3\}$, $n \in \{2,\ldots,7\}$. Prove that at least one of these rectangles has all four corner squares the same color.
- 3. Prove that if a, b are positive numbers, then

$$\left(\frac{a+1}{b+1}\right)^{b+1} \ge \left(\frac{a}{b}\right)^b.$$

4. Find all positive integers p and q such that all the roots of the polynomial

$$(x^2 - px + q)(x^2 - qx + p)$$

are positive integers.

5. Solve in natural numbers a, b, c the system

$$a^3 - b^3 - c^3 = 3abc,$$

 $a^2 = 2(a+b+c).$

6. Assume a_1, a_2, \dots, a_{14} are positive integers such that

$$\sum_{i=1}^{14} 3^{a_i} = 6558.$$

Prove that the numbers a_1, \ldots, a_{14} consist of the numbers $1, \ldots, 7$, each taken twice.

