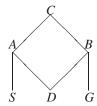
29-th Spanish Mathematical Olympiad 1993

Second Round Madrid

First Part

- 1. There is a reunion of 201 people from 5 different countries. It is known that in each group of 6 people, at least two have the same age. Show that there must be at least 5 people with the same country, age and sex.
- 2. In the arithmetic triangle below each number (apart from those in the first row) is the sum of the two numbers immediately above.


0		1		2		3		4	 1991	1992	2	1993
	1		3		5		7		 39	83	3985	
		4		8		12		• • •	 	7968		

Prove that the bottom number is a multiple of 1993.

3. Prove that in every triangle the diameter of the incircle is not greater than the radius of the circumcircle.

Second Part

- 4. Prove that for each prime number distinct from 2 and 5 there exist infinitely many multiples of *p* of the form 1111...1.
- 5. Given a 4×4 grid of points, the points at two opposite corners are denoted A and D. We need to choose two other points B and C such that the six pairwise distances of these four points are all distinct.
 - (a) How many such quadruples of points are there?
 - (b) How many such quadruples of points are non-congruent?
 - (c) If each point is assigned a pair of coordinates (x_i, y_i) , prove that the sum of the expressions $|x_i x_j| + |y_i y_j|$ over all six pairs of points in a quadruple is constant.
- 6. A game in a casino uses the diagram shown. At the start a ball appears at *S*. Each time the player presses a button, the ball moves to one of the adjacent letters with equal probability. The game ends when one of the following two things happens:

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- (i) The ball returns to S: the player loses.
- (ii) The ball reaches G: the player wins.

Find the probability that the player wins and the expected duration of a game.

