25-th Spanish Mathematical Olympiad 1989

Second Round Madrid, February

First Part

- 1. An exam at a university consists of one question randomly selected from the n possible questions. A student knows only one question, but he can take the exam n times. Express as a function of n the probability p_n that the student will pass the exam. Does p_n increase or decrease as n increases? Compute $\lim_{n\to\infty} p_n$. What is the largest lower bound of the probabilities p_n ?
- 2. Points A', B', C' on the respective sides BC, CA, AB of triangle ABC satisfy $\frac{AC'}{AB} = \frac{BA'}{BC} = \frac{CB'}{CA} = k$. The lines AA', BB', CC' form a triangle $A_1B_1C_1$ (possibly degenerate). Given k and the area S of $\triangle ABC$, compute the area of $\triangle A_1B_1C_1$.
- 3. Prove that $\frac{1}{10\sqrt{2}} < \frac{1 \cdot 3 \cdot 5 \cdots 99}{2 \cdot 4 \cdot 6 \cdots 100} < \frac{1}{10}$.

Second Part

- 4. Show that the number 1989, as well as each of its powers 1989^n ($n \in \mathbb{N}$), can be expressed as a sum of two positive squares in at least two ways.
- 5. Consider the set D of all complex numbers of the form $a+b\sqrt{-13}$ with $a,b\in\mathbb{Z}$. The number $14=14+0\sqrt{-13}$ can be written as a product of two elements of D: $14=2\cdot7$. Find all possible ways to express 14 as a product of two elements of D.
- 6. Prove that among any seven real numbers there exist two, a and b, such that

$$\sqrt{3}|a-b|<|1+ab|.$$

Give an example of six real numbers not having this property.

