22-nd Spanish Mathematical Olympiad 1986

Second Round Madrid, February 1986

First Part

1. Define the distance between real numbers *x* and *y* by

$$d(x,y) = \sqrt{([x] - [y])^2 + (\{x\} - \{y\})^2}.$$

Determine (as a union of intervals) the set of real numbers whose distance from $\frac{3}{2}$ is less than $\frac{202}{100}$.

- 2. A segment *d* is said to divide a segment *s* if there is a natural number *n* such that $s = nd = d + d + \cdots + d$ (*n* times).
 - (a) Prove that if a segment d divides segments s and s' with s < s', then it also divides their difference s' s.
 - (b) Prove that no segment divides the side s and the diagonal s' of a regular pentagon (consider the pentagon formed by the diagonals of the given pentagon without explicitly computing the ratios).
- 3. Find the natural numbers *n* for which $5^n + 3$ is a power of 2.

Second Part

4. Denote by m(a,b) the arithmetic mean of positive real numbers a,b. Given a positive real function g having positive derivatives of the first and second order, define the mean value of a and b with respect to g by

$$2g(\mu(a,b)) = g(a) + g(b).$$

Decide which of the two mean values m and μ is larger.

- 5. Consider the curve Γ defined by the equation $y^2 = x^3 + bx + b^2$, where b is a nonzero rational constant. Inscribe in the curve Γ a triangle whose vertices have rational coordinates.
- 6. Evaluate $\prod_{k=1}^{14} \cos \frac{k\pi}{15}.$

