37-th Spanish Mathematical Olympiad 2001

Second Round Murcia

First Part

1. Prove that the graph of a polynomial P(x) is symmetric with respect to a point A(a,b) if and only if there exists a polynomial Q(x) such that

$$P(x) = b + (x - a)Q((x - a)^2).$$

- 2. Let *P* be an interior point of a triangle *ABC* such that AP = BP. On the other two sides of $\triangle ABC$ are externally constructed triangles *BQC* and *CRA*, similar to triangle *ABP*, with BQ = QC and CR = RA. Prove that the points *P*,*Q*,*C* and *R* are either collinear or vertices of a parallelogram.
- 3. Five given segments a_1, a_2, a_3, a_4, a_5 are such that any three of them are sides of a certain triangle. Show that at least one of these triangles is acute-angled.

Second Part

- 4. The digits 1 to 9 are arranged in a 3×3 board. One computes the sum of the six three-digit numbers: three in the rows left to right and three in the columns top to bottom. Can this sum be equal to 2001?
- 5. A quadrilateral *ABCD* is inscribed in a circle of radius 1 whose diameter is *AB*. If the quadrilateral *ABCD* has an incircle, prove that $CD \le 2(\sqrt{5}-2)$.
- 6. Find a function $f : \mathbb{N} \to \mathbb{N}$ which satisfies $f(2^s) = f(1)$ for all $s, n \in \mathbb{N}$ and $f(2^s + n) = f(n) + 1$ for $n < 2^s$. Find the maximum value of f(n) for $n \le 2001$ and determine the smallest *n* for which f(n) = 2001.

