Slovenian Team Selection Tests 1997

First Test

- 1. Circles \mathcal{K}_1 and \mathcal{K}_2 are externally tangent to each other at A and are internally tangent to a circle \mathcal{K} at A_1 and A_2 respectively. The common tangent to \mathcal{K}_1 and \mathcal{K}_2 at A meets \mathcal{K} at point P. Line PA_1 meets \mathcal{K}_1 again at B_1 and PA_2 meets \mathcal{K}_2 again at B_2 . Show that B_1B_2 is a common tangent of \mathcal{K}_1 and \mathcal{K}_2 .
- 2. Find all polynomials p with real coefficients such that for all real x

$$xp(x)p(1-x) + x^3 + 100 \ge 0.$$

3. Let A_1, A_2, \dots, A_n be $n \ge 2$ distinct points on a circle. Find the number of colorings of these points with $p \ge 2$ colors such that every two adjacent points receive different colors.

Second Test

1. Let P be a point in the interior of an equilateral triangle ABC. The lines AP,BP,CP meet the sides BC,CA,AB in the points A_1,B_1,C_1 respectively. Prove that

$$A_1B_1 \cdot B_1C_1 \cdot C_1A_1 \ge A_1B \cdot B_1C \cdot C_1A$$
.

- 2. The lattice points of an $n \times n$ grid are to be colored red or blue in such a way that each unit square has exactly two blue vertices. How many different colorings are there?
- 3. Let *p* be a prime number and *a* be an integer. Prove that if $2^p + 3^p = a^n$ for some integer *n*, then n = 1.

