Romanian IMO Team Selection Tests 1996

First Test

Time: 4.5 hours

1. Let n > 2 be an integer and $f : \mathbb{R}^2 \to \mathbb{R}$ be a function such that for any regular n-gon $A_1A_2 \dots A_n$,

$$f(A_1) + f(A_2) + \cdots + f(A_n) = 0.$$

Prove that f is the zero function.

- 2. Find the greatest positive integer n for which there exist n nonnegative integers x_1, x_2, \ldots, x_n , not all zero, such that for any $\varepsilon_1, \varepsilon_2, \ldots, \varepsilon_n$ from the set $\{-1, 0, 1\}$, not all zero, $\varepsilon_1 x_1 + \varepsilon_2 x_2 + \cdots + \varepsilon_n x_n$ is not divisible by n^3 .
- 3. Prove that if the set $\{\cos(n\pi x) + \cos(n\pi y) \mid n \in \mathbb{N}\}$ is finite for some real numbers x, y, then x, y are rational.
- 4. Let ABCD be a cyclic quadrilateral and let \mathscr{M} be the set of incenters and excenters of the triangles BCD, CDA, DAB, ABC (16 points in total). Prove that there are two sets \mathscr{K} and \mathscr{L} of four parallel lines each, such that every line in $\mathscr{K} \cup \mathscr{L}$ contains exactly four points of \mathscr{M} .

Second Test

Time: 4.5 hours

- 1. Let A and B be points on a circle $\mathscr C$ with center O such that $\angle AOB = \pi/2$. Circles $\mathscr C_1$ and $\mathscr C_2$ are internally tangent to $\mathscr C$ at A and B respectively, and a circle $\mathscr C_3$ is externally tangent to $\mathscr C_1, \mathscr C_2$ at S and T and internally tangent to $\mathscr C$ at M. Determine $\angle SMT$.
- 2. Let \mathscr{C} be a circle with center O. A line d intersects the circle \mathscr{C} at C and D and the diameter AB of \mathscr{C} at M so that MB < MA and MD < MC. The circumcircles of AOC and BOD intersect again at K. Prove that OK is perpendicular to KM.
- 3. Let a be a real number and $f_1, f_2, \dots, f_n : \mathbb{R} \to \mathbb{R}$ be additive functions such that

$$f_1(x)f_2(x)\cdots f_n(x)=ax^n$$
 for all $x\in\mathbb{R}$.

Prove that there exist $i \in \{1, 2, ..., n\}$ and $b \in \mathbb{R}$ such that $f_i(x) = bx$ for all real x.

4. The sequence $(a_n)_{n\geq 2}$ is defined as $a_n = p_1^{-1} + p_2^{-1} + \dots + p_k^{-1}$, where p_1, p_2, \dots, p_k are the distinct prime factors of n. Show that for any integer $N \geq 2$,

$$a_2 + a_2 a_3 + \cdots + a_2 a_3 \cdots a_N < 1.$$

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 1. Let x_1, x_2, \dots, x_{n-1} $(n \ge 3)$ be nonnegative integers such that

$$x_1 + x_2 + \dots + x_{n-1} = n,$$

 $x_1 + 2x_2 + \dots + (n-1)x_{n-1} = 2n-2.$

Find the minimum value of $F(x_1, \dots, x_{n-1}) = \sum_{k=1}^{n-1} k(2n-k)x_k$.

- 2. Let *n* and *r* be positive integers and *A* be a set of lattice points in the plane such that any open disc of radius *r* contains a point of *A*. Show that for any coloring of the points of *A* in *n* colors there exists four points of the same color which are the vertices of a rectangle.
- 3. Find all primes p,q such that $3pq \mid \alpha^{3pq} \alpha$ for all integers α .
- 4. Let $n \ge 3$ be an integer and $p \ge 2n 3$ be a prime. For a set M of n points in the plane, no three collinear, let $f: M \to \{0, 1, \dots, p-1\}$ be a function such that
 - (i) exactly one point of M maps to zero, and
 - (ii) if a circle k passes through distinct points $A,B,C\in M$, then $\sum_{P\in M\cap k}f(P)\equiv 0$ (mod p).

Show that all the points of M lie on a circle.

Fourth Test

Time: 4.5 hours

1. Let $x_1, x_2, ..., x_n$ be positive real numbers and $x_{n+1} = x_1 + x_2 + \cdots + x_n$. Prove that

$$\sum_{i=1}^{n} \sqrt{x_i(x_{n+1} - x_i)} \le \sqrt{\sum_{i=1}^{n} x_{n+1}(x_{n+1} - x_i)}.$$

- 2. Let x, y, z be real numbers. Prove that the following conditions are equivalent:
 - (i) x, y, z are positive and $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} \le 1$.
 - (ii) $a^2x + b^2y + c^2z > d^2$ holds for every quadrilateral with sides a, b, c, d.
- 3. Let \mathscr{D} be a set of n concentric circles in the plane. Prove that if the function $f: \mathscr{D} \to \mathscr{D}$ satisfies

$$d(f(A), f(B)) \ge d(A, B)$$
 for all $A, B \in \mathcal{D}$,

then d(f(A), f(B)) = d(A, B) for all $A, B \in \mathcal{D}$.

4. Let $n \ge 3$ be an integer and X be a $3n^2$ -element subset of $\{1, 2, ..., n^3\}$. Prove that there are nine distinct numbers $a_1, ..., a_9 \in X$ such that the system

$$a_1x + a_2y + a_3z = 0$$

 $a_4x + a_5y + a_6z = 0$
 $a_7x + a_8y + a_9z = 0$

has a solution (x_0, y_0, z_0) in nonzero integers.

