Romanian Team Selection Tests 1991

Selection Test for Balkan MO

- 1. Suppose that a, b are positive integers for which $A = \frac{a+1}{b} + \frac{b}{a}$ is an integer. Prove that A = 3.
- 2. Let $A_1A_2A_3A_4$ be a tetrahedron. For any permutation (i, j, k, h) of 1, 2, 3, 4 denote:
 - P_i the orthogonal projection of A_i on $A_jA_kA_h$;
 - B_{ij} the midpoint of the edge A_iA_j ;
 - C_{ij} the midpoint of segment P_iP_j ;
 - β_{ij} the plane $B_{ij}P_hP_k$;
 - δ_{ij} the plane $B_{ij}P_iP_j$;
 - α_{ij} the plane through C_{ij} orthogonal to $A_k A_h$;
 - γ_{ij} the plane through C_{ij} orthogonal to A_iA_j ;

Prove that if the points P_i are not in a plane, then the following sets of planes are concurrent: (a) α_{ij} ; (b) β_{ij} ; (c) γ_{ij} ; (d) δ_{ij} .

3. Prove the following identity for every $n \in \mathbb{N}$:

$$\sum_{\substack{j+h=n\\j>h}} \frac{(-1)^h 2^{j-h} \binom{j}{h}}{j} = \frac{2}{n}.$$

4. A sequence (a_n) of positive integers satisfies $(a_m, a_n) = a_{(m,n)}$ for all m, n. Prove that there is a unique sequence (b_n) of positive integers such that

$$a_n = \prod_{d|n} b_d.$$

First Test for IMO

- 1. Let A_1, \ldots, A_5 be five points in a plane such that the area of each triangle $A_i A_j A_k$ ($1 \le i < j < k \le 5$) is greater than 3. Prove that one of the triangles $A_i A_j A_k$ has an area greater than 4.
- 2. The sequence (a_n) is defined by $a_1 = a_2 = 1$ and $a_{n+2} = a_{n+1} + a_n + k$, where k is a positive integer. Find the least k for which a_{1991} and 1991 are not coprime.

3. Let *C* be a coloring of all edges and diagonals of a convex n—gon in red and blue (in Romanian, *rosu* and *albastru*). Denote by $q_r(C)$ (resp. $q_a(C)$) the number of quadrilaterals having all its edges and diagonals red (resp. blue). Prove:

$$\min_{C} \left(q_r(C) + q_a(C) \right) \le \frac{1}{32} \binom{n}{4}.$$

4. Let \mathscr{S} be the set of all polygonal areas in a plane. Prove that there is a function $f: \mathscr{S} \to (0,1)$ which satisfies

$$f(S_1 \cup S_2) = f(S_1) + f(S_2)$$

for any $S_1, S_2 \in \mathcal{S}$ which have common points only on their borders.

Second Test for IMO

- 1. In a triangle $A_1A_2A_3$, the excribed circles corresponding to sides A_2A_3 , A_3A_1 , A_1A_2 touch these sides at T_1 , T_2 , T_3 , respectively. If H_1 , H_2 , H_3 are the orthocenters of triangles $A_1T_2T_3$, $A_2T_3T_1$, $A_3T_1T_2$, respectively, prove that lines H_1T_1 , H_2T_2 , H_3T_3 are concurrent.
- Let n ≥ 3 be an integer. A finite number of disjoint arcs with the total sum of length 1 1/n are given on a circle of perimeter 1. Prove that there is a regular n-gon whose all vertices lie on the considered arcs.
- 3. Let x_1, x_2, \dots, x_n be positive real numbers with the sum 1. Prove that

$$x_1^2 x_2^2 \cdots x_n^2 + x_2^2 x_3^2 \cdots x_{n+1}^2 + \dots + x_{2n}^2 x_1^2 \cdots x_{n-1}^2 < \frac{1}{n^{2n}}$$

4. Let n,a,b be integers with $n \ge 2$ and $a \notin \{0,1\}$ and let u(x) = ax + b be the function defined on integers. Show that there are infinitely many functions $f: \mathbb{Z} \to \mathbb{Z}$ such that

$$f^{n}(x) = \underbrace{f(f(\cdots f(x)\cdots))}_{n} = u(x)$$
 for all x .

If a = 1, show that there is a b for which there is no f with $f^n(x) \equiv u(x)$.

Third Test for IMO

- 1. The diagonals of a pentagon *ABCDE* determine another pentagon *MNPQR*. If *MNPQR* and *ABCDE* are similar, must *ABCDE* be regular?
- 2. Let $a_1 < a_2 < \cdots < a_n$ be positive integers. We say that a coloring of the set \mathbb{Z} is periodic with period t, if for any integer x exactly one of the numbers $x + a_1, x + a_2, \ldots, x + a_n$ is blue. If there is a periodic coloring with period t, prove that n divides t.

