Romanian Team Selection Tests 1990

Selection Test for Balkan MO

1. Let $f : \mathbb{N} \to \mathbb{N}$ be a function such that the set $\{k \mid f(k) < k\}$ is finite. Prove that the set

$${k \mid g(f(k)) \ge k}$$

is infinite for all functions $g : \mathbb{N} \to \mathbb{N}$.

2. If a,b,c are sides of a triangle of circumradius R, prove the inequality

$$\frac{a^2}{b+c-a} + \frac{b^2}{c+a-b} + \frac{c^2}{a+b-c} \ge 3R\sqrt{3}.$$

- 3. Let n be a positive integer. Prove that the least common multiple of numbers $\binom{n}{1}, \binom{n}{2}, \ldots, \binom{n}{n}$ is equal to the least common multiple of numbers $1, 2, \ldots, n$ if and only if n+1 is a prime.
- 4. Let M be a point on the edge CD of a tetrahedron ABCD such that the tetrahedra ABCM and ABDM have the same total areas. We denote by π_{AB} the plane ABM. Planes $\pi_{AC}, \ldots, \pi_{CD}$ are analogously defined. Prove that the six planes $\pi_{AB}, \ldots, \pi_{CD}$ are concurrent in a certain point N, and show that N is symmetric to the incenter I with respect to the barycenter G.

First Test for IMO

1. Let a, b, n be positive integers such that (a, b) = 1. Prove that if (x, y) is a solution of the equation $ax + by = a^n + b^n$, then

$$\left[\frac{x}{b}\right] + \left[\frac{y}{a}\right] = \left[\frac{a^{n-1}}{b}\right] + \left[\frac{b^{n-1}}{a}\right].$$

2. Prove the following inequality for all positive integers m, n:

$$\sum_{k=0}^{n} {m+k \choose k} 2^{n-k} + \sum_{k=0}^{m} {n+k \choose k} 2^{m-k} = 2^{m+n+1}.$$

- 3. Find all polynomials P(x) such that $2P(2x^2-1) = P(x)^2 1$ for all x.
- 4. The six faces of a hexahedron are quadrilaterals. Prove that if seven its vertices lie on a sphere, then the eighth vertex also lies on the sphere.

Second Test for IMO

1

- 1. Let O be the circumcenter of an acute triangle ABC and R be its circumcenter. Consider the disks having OA, OB, OC as diameters, and let Δ be the set of points in the plane belonging to at least two of the disks. Prove that the area of Δ is greater than $R^2/8$.
- 2. Prove that there are infinitely many n's for which there exists a partition of $\{1, 2, ..., 3n\}$ into subsets $\{a_1, ..., a_n\}$, $\{b_1, ..., b_n\}$, $\{c_1, ..., c_n\}$ such that $a_i + b_i = c_i$ for all i, and prove that there are infinitely many n's for which there is no such partition.
- 3. The sequence x_n is df=efined by $x_1 = 1$ and $x_{n+1} = \frac{x_n}{n} + \frac{n}{x_n}$. Prove that this sequence is increasing and that $[x_n^2] = n$ for each n.
- 4. For a set S of n points, let $d_1 > d_2 > \cdots > d_k > \cdots$ be the distances between the points. A function $f_k : S \to \mathbb{N}$ is called a *coloring function* if, for any pair M, N of points in S with $MN \ge d_k$, it takes the value $f_k(M) + f_k(N)$ at some point. Prove that for each $m \in \mathbb{N}$ there are positive integers n, k and a set S of n points such that every coloring function f_k of S satisfies $|f_k(S)| \ge m$.

Third Test for IMO

- 1. The distance between any two of six given points in the plane is at least 1. Prove that the distance between some two points is at least $\sqrt{\frac{5+\sqrt{5}}{2}}$.
- 2. Suppose that p,q are positive primes such that $q \mid 2^p + 3^p$. Prove that q > p.
- 3. In a group of n persons,
 - (i) each person is acquainted to exactly *k* others;
 - (ii) any two acquainted persons have exactly l common acquaintances;
 - (iii) any two non-acquainted persons have exactly *m* common acquaintances.

Prove that m(n - k - 1) = k(k - l - 1).

