First Test – April 23, 2003.

Time: 4 hours. Each problem is worth 7 points.

1. Let a sequence $\{a_n\}$ $(n \in \mathbb{N})$ of real numbers be defined by $a_1 = 1/2$ and, for each positive integer n,

$$a_{n+1} = \frac{a_n^2}{a_n^2 - a_n + 1}.$$

Prove that for every $n \in \mathbb{N}$ it holds that $a_1 + a_2 + \cdots + a_n < 1$.

- 2. Let *ABC* be a triangle with $\angle BAC = 60^{circ}$. Suppose that there exists a point *P* inside the triangle such that *PA* = 1, *PB* = 2 and *PC* = 3. Find the maximum possible area of $\triangle ABC$.
- 3. Let *n*,*k* be positive integers such that $n^k > (k+1)!$. Consider the set

$$M = \{ (x_1, x_2, \dots, x_n) \mid x_i \in \{1, 2, \dots, k\} \text{ for } i = 1, \dots, n \}.$$

Prove that in every (k+1)! + 1-element subset *A* of *M* there exist two elements $a = (a_1, \ldots, a_n), b = (b_1, \ldots, b_n)$ such that $(k+1)! | (b_1 - a_1)(b_2 - a_2) \cdots (b_k - a_k)$.

Time: 4 hours. Each problem is worth 7 points.

- 1. Prove that among the elements the sequence $\left[n\sqrt{2003}\right]$ one can find a geometric progression of an arbitrary length and with arbitrarily large ratio.
- 2. Let *f* be an irreducible monic polynomial with integer coefficients, such that |f(0)| is not a perfect square. Prove that the polynomial $g(x) = f(x^2)$ is also irreducible over non-constant polynomials with integer coefficients.
- 3. At a math contest 2n students take part ($n \in \mathbb{N}$). Each student submits a problem to the jury, which thereafter gives each student one of the 2n submitted problems. We call a distribution of the problems *fair* if there exist *n* students that received problems from the other *n* participants. Prove that the number of fair distributions is a perfect square.

1

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- 1. Find all integers a, b, m, n, where m > n > 0, such that the polynomial $f(x) = x^n + ax + b$ divides the polynomial $g(x) = x^m + ax + b$.
- 2. Let ω_1 and ω_2 be two externally tangent circles with radii r_1 and $r_2 > r_1$ respectively. Let their external common tangent t_1 meet ω_1 and ω_2 at points *A* and *D* respectively. The line t_2 is parallel to t_1 and tangent to ω_1 and intersects ω_2 at points *E* and *F*. The line t_3 through *D* intersects t_2 and ω_2 again at *B* and *C* respectively. Prove that the circumcircle of triangle *ABC* is tangent to line t_1 .
- 3. Let $n \ge 3$ be a positive integer. In the cells of a $n \times n$ matrix there are placed n^2 positive real numbers with sum n^3 . Prove that there exist four elements which form a 2×2 square with sides parallel to the sides of the matrix, and whose sum is greater than 3n.

Fourth Test – May 25, 2003.

Time: 4 hours. Each problem is worth 7 points.

- 1. Let *P* be the set of all primes and *M* be a subset of *P*, having at least three elements, with the following property: For any proper subset *A* of *M*, all the prime factors of the number $\prod_{p \in A} p 1$ are in *M*. Prove that M = P.
- 2. Let *A*, *B*, *C*, *D* be points in a square of side 6, such that the distance between any two of them is at least 5. Prove that *ABCD* is a convex quadrilateral of area greater than 21.
- 3. Consider all words consisting of letters from the alphabet $\{a, b, c, d\}$. A word is said to be *complicated* if it contains two consecutive identical groups of letters (for example, *caab* and *cababdc* are complicated, while *abcab* is not); otherwise it is said to be *simple*. Prove that there are more than 2^n simple words of length *n*.

Fifth Test – June 19, 2003.

Time: 4 hours. Each problem is worth 7 points.

A parliament consists of *n* deputies. The deputies form 10 parties and 10 committees, such that each deputy belongs to exactly one party and one committee. Find the least *n* for which one can label the parties and the committees with numbers from 1 to 10 so that there exist at least 11 deputies, each of which belongs to a party and a committee which are labelled with the same number.

2

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

- 2. Suppose *ABCD* is a rhombus of side 1 and *M* and *N* points on the sides *BC* and *CD* respectively such that CM + MN + NC = 2 and $\angle BAD = 2 \angle MAN$. Find the angles of the rhombus.
- 3. We say that a point A(x, y) is an *integer point* if both x and y are integers. Denote O(0,0). An integer point A is said to be *invisible* if the segment OA contains at least one integer point. Given any $n \in \mathbb{N}$, prove that there exists a square of side *n* whose all interior integer points are invisible.

Sixth Test – June 20, 2003.

Time: 4 hours. Each problem is worth 7 points.

- 1. In a convex hexagon *ABCDEF*, points *A'*, *B'*, *C'*, *D'*, *E'*, *F'* are the midpoints of segments *AB*, *BC*, *CD*, *DE*, *EF*, *FA* respectively. Given the areas of the triangles *ABC'*, *BCD'*, *CDE'*, *DEF'*, *EFA'*, *FAB'*, find the area of the hexagon.
- 2. A permutation σ of the set $\{1, 2, ..., n\}$ is called *straight* if for each k = 1, ..., n 1, $\sigma(k) \sigma(k+1) \leq 2$. Find the smallest $n \in \mathbb{N}$ for which there exist at least 2003 straight permutations.
- 3. Let d(n) denote the sum of decimal digits of a positive integer n. Prove that for each $k \in \mathbb{N}$ there exists a positive integer m such that the equation x + d(x) = m has exactly k solutions in \mathbb{N} .

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com