Romanian IMO Team Selection Tests 2002

First Test - March 21, 2002.

Time: 4 hours

- 1. Find all pairs A, B of sets satisfying the following conditions:
 - (i) $A \cup B = \mathbb{Z}$;
 - (ii) if $x \in A$ then $x 1 \in B$;
 - (iii) if $x, y \in B$ then $x + y \in A$.
- 2. The sequence (a_n) is defined by

$$a_0 = a_1 = 1$$
 and $a_{n+1} = 14a_n - a_{n-1}$ for all $n \ge 1$.

Prove that $2a_n - 1$ is a perfect square for any $n \ge 0$.

- 3. In an acute triangle ABC, let M,N be the midpoints of AB and AC respectively, P be the projection of N on BC and A_1 be the midpoint of MP. Points B_1 and C_1 are constructed similarly. Prove that if AA_1,BB_1 and CC_1 are concurrent then $\triangle ABC$ is isosceles.
- 4. For any $n \in \mathbb{N}$ let f(n) be the number of choices of signs +/- in the expression $E = \pm 1 \pm 2 \pm \cdots \pm n$ which yield the value E = 0. Prove that:
 - (a) if $n \equiv 1, 2 \pmod{4}$ then f(n) = 0;
 - (b) if $n \equiv 0, 3 \pmod{4}$ then

$$\sqrt{2}^{n-2} \le f(n) < 2^n - 2^{[n/2]+1}.$$

Second Test - April 13, 2002.

Time: 4 hours

- 1. Let M and N be points in the interior of a square ABCD such that the line MN contains no vertex of the square. Denote by s(M,N) the smallest area of a triangle with vertices in the set $\{A,B,C,D,M,N\}$. Find the smallest real number k such that for any such points M,N it holds that $s(M,N) \le k$.
- 2. Assume that *P* and *Q* are polynomials with coefficients in the set $\{1,2002\}$ such that *P* divides *Q*, prove that then deg P+1 divides deg Q+1.
- 3. Given positive real numbers a, b, define x_n ($n \in \mathbb{N}$) as the sum of digits of [an + b]. Prove that there exists a positive integer which occurs in the sequence infinitely often.

1

4. At an international conference there are four official languages. Any two participants can talk to each other in at least one of the official languages. Prove that there is a language which is spoken by at least 60 percents of the participants.

Time: 4 hours

- 1. A pentagon ABCD inscribed in a circle with center O has angles $\angle B = \angle C = 120^{\circ}$, $\angle D = 130^{\circ}$, $\angle E = 100^{\circ}$. Prove that the intersection point of BD and CE lies on AO.
- 2. Let a_1, a_2, \dots, a_n be positive real numbers $(n \ge 3)$ such that $a_1^2 + \dots + a_n^2 = 1$. Prove the inequality

$$\frac{a_1}{a_2^2+1} + \frac{a_2}{a_3^2+1} + \dots + \frac{a_n}{a_1^2+1} \ge \frac{4}{5} \left(a_1 \sqrt{a_1} + \dots + a_n \sqrt{a_n} \right)^2.$$

- 3. For an even positive integer n, let S denote the set of natural numbers a, 1 < a < n for which $a^{a-1} 1$ is divisible by n. If $S = \{n-1\}$, prove that n = 2p for some prime number p.
- 4. Suppose $f: \mathbb{Z} \to \{1, 2, ..., n\}$ is a function such that $f(x) \neq f(y)$ whenever |x y| is 2, 3 or 5. Prove that $n \geq 3$.

Fourth Test - June 1, 2002.

Time: 4 hours

- 1. Given $p_0, p_1 \in \mathbb{N}$, define p_{n+2} $(n \ge 0)$ inductively to be the smallest prime divisor of $p_n + \underline{p_{n+1}}$. Prove that the real number whose decimal representation is given by $x = \overline{0.p_0p_1p_2...}$ is rational.
- 2. Consider a unit square $A_1A_2A_3A_4$. Determine the smallest real number a > 0 with the following property: For any positive reals r_1, r_2, r_3, r_4 with sum a there exist points X_i in the plane satisfying $X_iA_i \le r_i$ ($1 \le i \le 4$) such that one of the triangles with vertices in X_1, X_2, X_3, X_4 is equilateral.
- 3. In a parliament there are several parties, and each member of the parliament has a constant absolute rating. Within a party, each member has a relative rating which is equal to the ratio of his/her rating to the sum of all the ratings in the party. A member of the parliament may change the party only if that would increase his/her relative rating. Prove that after finitely many changes of parties no more changes will be possible.

- 1. Let m and n be positive integers, not of the same parity, such that m < n < 5m. Show that the set $\{1, 2, \dots, 4mn\}$ can be partitioned into pairs of numbers so that the sum in each pair is a square.
- 2. Let a triangle ABC with $AB < AC \neq BC$ be inscribed in a circle \mathscr{C} . The tangent at A to \mathscr{C} intersects BC at D. The circle tangent to segments BD, AD and circle \mathscr{C} meets BC at M. Prove that $\angle DAM = \angle MAB$ if and only if AC = CM.
- 3. We are given np cards. In each of n colors exactly p cards, numbered $1, 2, \ldots, p$, are colored. There are n players playing the following game. Each of them initially receives p cards. The game is glayed in p rounds after the following rules:
 - (i) In each round he first player puts down a card; every other player thereafter puts down a card of the same color if he/she has any, and any card otherwise.
 - (ii) In each round, the player who put down the card of the initial color which is numbered with the biggest number wins the round.
 - (iii) The player who wins a round starts the next round.
 - (iv) The first round is started by a random player and after each round the cards player will be taken out of the game.

Assume that all cards numbered 1 won the rounds in which they were put down. Prove that $p \ge 2n$.

