Romanian IMO Team Selection Tests 2000

First Test

Time: 4 hours

- 1. How many functions $f : \{1, 2, ..., n\} \rightarrow \{1, 2, ..., 5\}$ are there such that for any k = 1, 2, ..., n-1 it holds that $|f(k+1) f(k)| \ge 3$?
- 2. Suppose x_1, x_2, \ldots, x_{2n} are real numbers such that $|x_{i+1} x_i| \le 1$ for any $i, 1 \le i \le 2n 1$. Prove that

$$|x_1| + |x_2| + \dots + |x_{2n}| + |x_1 + x_2 + \dots + |x_{2n}| \ge n(n+1).$$

3. Prove that for any positive integers *n* and *k* one can find integers a, b, c, d, e > k such that

$$n = \pm \begin{pmatrix} a \\ 3 \end{pmatrix} \pm \begin{pmatrix} b \\ 3 \end{pmatrix} \pm \begin{pmatrix} c \\ 3 \end{pmatrix} \pm \begin{pmatrix} d \\ 3 \end{pmatrix} \pm \begin{pmatrix} e \\ 3 \end{pmatrix}$$

4. Suppose that a convex polygon $P_1P_2...P_n$ has the property that for any distinct i, j there exists k (distinct from i, j) such that $\angle P_iP_jP_k = 60^\circ$. Prove that n = 3.

Second Test

Time: 4 hours

1. Prove that the equation

$$x^3 + y^3 = z^4 - t^2$$

has infinitely many positive integer solutions x, y, z, t such that (x, y, z, t) = 1.

2. Let *M* be an arbitrary point inside a triangle *ABC*. Prove that

 $\min MA, MB, MC + MA + MB + MC < AB + BC + CA.$

3. Find all pairs of positive integers (m,n) for which a rectangle $m \times n$ can be tiled with *L*-trominoes

Third Test

Time: 4 hours

1. Given a positive integer *a*, find the minimum $k \in \mathbb{N}$ such that $2^{2000} \mid a^k - 1$.

1

2. In an acute-angled triangle *ABC*, let *M* be the midpoint of *BC* and *N* be a point in the interior of the triangle such that $\angle NBA = \angle BAM$ and $\angle NCA = \angle CAM$. Prove that $\angle NAB = \angle MAC$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com 3. Let \mathscr{C} be the interior of a circle and \mathscr{S} be the interior of a sphere. Prove that there is no function $f : \mathscr{S} \to \mathscr{C}$ so that

 $d(A,B) \le d(f(A), f(B))$ for any $A, B \in \mathscr{S}$,

where d(X, Y) denotes the distance between points X, Y.

Fourth Test

Time: 4 hours

- 1. Let P_1 be a regular *n*-gon, where $n \in \mathbb{N}$. We construct P_2 as the regular *n*-gon whose vertices are the midpoints of the edges of P_1 . Continuing analogously, we obtain regular *n*-gons P_3, P_4, \ldots, P_m . For $m \ge n^2 n + 1$, find the maximum number *k* such that for any coloring of vertices of P_1, \ldots, P_m in *k* colors there exists a (possible degenerate) isosceles trapezoid whose vertices have the same color.
- 2. Suppose P,Q are monic complex polynomials such that P(P(x)) = Q(Q(x)). Prove that P = Q.
- 3. Show that any positive rational number can be written in the form

$$\frac{a^3+b^3}{c^3+d^3}, \quad a,b,c,d \in \mathbb{N}$$

