49-th Romanian Mathematical Olympiad 1998

Final Round Vaslui, March 24–30, 1998

7-th Form

1. Let *n* be a positive integer and x_1, x_2, \ldots, x_n be integers satisfying

$$x_1^2 + x_2^2 + \dots + x_n^2 + n^3 \le (2n-1)(x_1 + x_2 + \dots + x_n) + n^2.$$

- (a) Show that x_1, x_2, \ldots, x_n are nonnegative.
- (b) Show that $x_1 + x_2 + \cdots + x_n + n + 1$ is not a perfect square.

(S. Smarandache)

- 2. Show that there is no positive integer *n* such that $n + k^2$ is a perfect square for at least *n* positive integers *k*. (*V. Zidaru*)
- 3. In the exterior of triangle *ABC* with $\angle B > 45^{\circ}$ and $\angle C > 45^{\circ}$ the right isosceles triangles *ACM*, *ABN* with the right angles at *A* are constructed. Also, the right isosceles triangle *BCP* with $\angle P = 90^{\circ}$ is constructed in the interior of $\triangle ABC$. Show that *MNP* is a right isosceles triangle.

(B. Enescu)

4. Let *E* be the point on the diagonal *BD* of a rectangle *ABCD* such that $\angle DAE = 15^\circ$, and let *F* be the foot of the perpendicular from *E* to *BD*. Given that EF = AB/2 and AD = a, find $\angle EAC$ and the length of segment *EC*. (*S. Peligrad*)

8-th Form

- 1. For a real number *a*, let $A = \{(x, y) \mid x, y \in \mathbb{R}, x + y = a\}$ and $A = \{(x, y) \mid x, y \in \mathbb{R}, x^3 + y^3 < a\}$. Find all values of *a* for which *A* and *B* are disjoint. (*R. Ilie*)
- 2. Let $P(X) = a_{1998}X^{1998} + \cdots + a_1X + a_0$ be a polynomial with real coefficients such that $P(0) \neq P(-1)$, and let $Q(X) = b_{1998}X^{1998} + \cdots + b_1X + b_0$ be the polynomial given by $b_k = aa_k + b$ for all k, where a and b are given real numbers. Show that if $Q(0) = Q(-1) \neq 0$, then Q(X) has no real root*M*. *Fianu*, *St. Alexe*)
- 3. In a trapezoid *ABCD* with *AB* \parallel *CD* and $\angle A = 90^{\circ}$ we have AD = DC = a and AB = 2a. Let *E* and *F* respectively be the points on the perpendiculars at *C* and *D* to the plane of the trapezoid, on the same side of the plane, such that CE = 2a and DF = a. Compute the distance from *B* to the plane *AEF* and the angle between *AF* and *BE*.

1

(R. Popovici, N. Solomon)

- 4. Let *ABCD* be an arbitrary tetrahedron. The bisectors of angles $\angle BDC$, $\angle CDA$, $\angle ADB$ intersect *BC*, *CA*, *AB* in points *M*, *N*, *P*, respectively.
 - (a) Show that the planes ADM, BDN and CDP have a common line d.
 - (b) Let A', B', C' be points on rays AD, BD, CD respectively, so that AA' = BB' = CC' and let G and G' be the centroids of triangles ABC and A'B'C'. Prove that the lines GG' and d are either parallel or identical.(M. Miculița)

9-th Form

- 1. Let $f(x) = ax^2 + bx + c$, where a, b, c are integers. Find a, b, c so that f(f(1)) = f(f(2)) = f(f(3)). (*C. Mortici, M. Chiriță*)
- 2. If ABCD is a cyclic (convex) quadrilateral, prove that

$$|AC - BD| \le |AB - CD|.$$

When does equality hold?

3. For integers a, b, find all rational roots (if any) of the equation

$$abx^{2} + (a^{2} + b^{2})x + 1 = 0.$$
 (D. Popescu)

(D. Mihet)

4. Let $A_1A_2...A_n$ be a regular polygon with n > 4. Let *T* be the intersection of lines A_1A_2 and $A_{n-1}A_n$ and *M* be any interior point of the triangle A_1A_nT . Show that the equality

$$\sum_{i=1}^{n-1} \frac{\sin^2 \angle A_i M A_{i+1}}{d(M, A_i A_{i+1})} = \frac{\sin^2 \angle A_1 M A_n}{d(M, A_1 A_n)},$$

where d(X, l) denotes the distance from point *X* to line *l*, holds if and only if *M* lies on the circumcircle of the polygon. (*D. Brânzei*)

10-th Form

- 1. Let $M = \{1, 2, ..., n\}$, where $n \ge 2$ is an integer. For every k = 1, 2, ..., n-1we define $x_k = \frac{1}{n+1} \sum (\min A + \max A)$, where the sum goes over all *k*-element subsets *A* of *M*. Show that $x_1, ..., x_{n-1}$ are integers, not all divisible b(*M*4*Zidaru*)
- 2. Let $a \ge 1$ be a real number. Suppose z is a complex number such that $|z+a| \le a$ and $|z^2+a| \le a$. Prove that $|z| \le a$. (D. *Şerbănescu*)
- Let A', B', C' be arbitrary points on edges DA, DB, DC respectively of a tetrahedron ABCD. Let points P_a, P_b, P_c, P'_a, P'_b, P'_c on BC, CA, AB, B'C', C'A', A'B', respectively, be defined by

$$\frac{P_bC}{P_bA} = \frac{P_b'C'}{P_b'A'} = \frac{CC'}{AA'}, \quad \frac{P_cA}{P_cB} = \frac{P_c'A'}{P_c'B'} = \frac{AA'}{BB'}, \quad \frac{P_aB}{P_aC} = \frac{P_a'B'}{P_a'C'} = \frac{BB'}{CC'}$$

2

- (a) Prove that the lines AP_a, BP_b, CP_c have a common point *P* and that the lines $A'P'_a, B'P'_b, C'P'_c$ have a common point *P'*.
- (b) Prove that $\frac{PC}{PP_c} = \frac{P'C'}{P'P'_c}$.
- (c) Prove that, as A', B', C' vary, the line PP' is always parallel to (Mixed chined)
- 4. Let $x_1 < x_2 < \cdots < x_n$ be positive integers, where $n \ge 2$. Define

$$s_k = \sum_A \frac{1}{\prod_{a \in A} a}$$
 for $k = 1, 2, \dots, n$,

where the sum is taken over all nonempty subsets *A* of $\{x_1, x_2, ..., x_k\}$. Prove that if s_n and s_{n-1} are positive integers, then s_k is a positive integer for **Bachlike**t)

11-th Form

1. The nonzero 2×2 matrices A_0, A_1, \dots, A_n with real entries satisfy $A_0 \neq aI$ for any real *a* and $A_0A_k = A_kA_0$ for all *k* (where *I* denotes the identity 2×2 matrix). Prove that

(a) det
$$\left(\sum_{k=1}^{n} A_{k}^{2}\right) \ge 0$$
;
(b) if det $\left(\sum_{k=1}^{n} A_{k}^{2}\right) = 0$ and $A_{2} \ne aA_{1}$ for any real a , then $\sum_{k=1}^{n} A_{k}^{2} = 0$.
(V. Pop)

- 2. Let (a_n) be a sequence of real numbers such that the sequence $x_n = \sum_{k=1}^n a_k^2$ is convergent and the sequence $y_n = \sum_{k=1}^n a_k$ is unbounded. Prove that the sequence $b_n = y_n [y_n]$ is divergent. (B. Enescu)
- 3. Suppose $f : \mathbb{R} \to \mathbb{R}$ is a differentiable function for which the inequality

$$f'(x) \le f'\left(x + \frac{1}{n}\right)$$

holds for every $x \in \mathbb{R}$ and every $n \in \mathbb{N}$. Prove that f is continuously differentiable.

 Let f : R → R be a continuous function such that for every real numbers a < b there exist c₁ ≤ c₂ in the interval [a,b] with

$$f(c_1) = \min_{a \le x \le b} f(x)$$
 and $f(c_2) = \max_{a \le x \le b} f(x)$.

Show that the function f is increasing.

(M. Piticari)

12-th Form

1. Let *a*,*b* be positive real numbers such that a + b < 1 and let $f : [0, \infty) \to [0, \infty)$ be an increasing function such that for every $x \ge 0$,

$$\int_0^x f(t)dt = \int_0^{ax} f(t)dt + \int_0^{bx} f(t)dt.$$

Prove that f(x) = 0 for all $x \ge 0$.

- 2. (a) For a prime number p, let $G_p = \bigcup_{n \in \mathbb{N}} \{z \in \mathbb{C} \mid z^{p^n} = 1\}$. Show that (G_p, \cdot) is a subgroup of \mathbb{C}^* .
 - (b) Let *H* be an infinite subgroup \mathbb{C}^* . Prove that every proper subgroup of *H* is infinite if and only if $H = G_p$ for some prime *p*. (***)
- 3. A ring *A* is called *boolean* if $x^2 = x$ for each $x \in A$. Prove that:
 - (a) One can define a structure of boolean ring on an *n*-element set $(n \ge 2)$ if and only if $n = 2^k$ for some $k \in \mathbb{N}$.
 - (b) It is possible to define a structure of boolean ring on the set \mathbb{N} .

(M. Andronache, S. Dăscălescu, I. Savu)

- 4. Let $k \subseteq \mathbb{C}$ be a field such that
 - (i) k has exactly two endomorphisms f and g;
 - (ii) if f(x) = g(x) then $x \in \mathbb{Q}$.

Prove that there exists a square-free integer d > 1 such that $k = \mathbb{Q}\left[\sqrt{d}\right]$. (*M. Ţena*)

