Third Round

First Day

- 1. Prove or disprove that there exist two tetrahedra T_1 and T_2 such that:
 - (i) the volume of T_1 is greater than that of T_2 ;
 - (ii) the area of any face of T_1 does not exceed the area of any face of T_2 .
- 2. Let *X* be the set of all lattice points in the plane (points (x, y) with $x, y \in \mathbb{Z}$). A *path* of length *n* is a chain (P_0, P_1, \ldots, P_n) of points in *X* such that $P_{i-1}P_i = 1$ for $i = 1, \ldots, n$. Let F(n) be the number of distinct paths beginning in P_0 and ending in any point P_n on line y = 0. Prove that $F(n) = \binom{2n}{n}$.
- 3. Define

$$N = \sum_{k=1}^{60} \varepsilon_k k^{k^k},$$

where $\varepsilon_k \in \{-1,1\}$ for each *k*. Prove that *N* cannot be the fifth power of an integer.

Second Day

- 4. On the Cartesian plane consider the set *V* of all vectors with integer coordinates. Determine all functions $f: V \to \mathbb{R}$ satisfying the conditions:
 - (i) f(v) = 1 for each of the four vectors $v \in V$ of unit length.
 - (ii) f(v+w) = f(v) + f(w) for every two perpendicular vectors $v, w \in V$.

(Note that the zero vector is perpendicular to every vector.)

- 5. Two noncongruent circles k_1 and k_2 are exterior to each other. Their common tangents intersect the line through their centers at points *A* and *B*. Let *P* be any point of k_1 . Prove that there is a diameter of k_2 with one endpoint on line *PA* and the other on *PB*.
- 6. If *x*, *y*, *z* are real numbers satisfying $x^2 + y^2 + z^2 = 2$, prove the inequality

$$x + y + z \le 2 + xyz$$

and find the conditions for equality.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com