40-th Polish Mathematical Olympiad 1988/89

Third Round

First Day

- 1. An even number of people are participating in a round table conference. After lunch break the participants change seats. Show that some two persons are separated by the same number of persons as they were before break.
- 2. Circles K_1, K_2, K_3 are given in the plane such that K_2 and K_3 are tangent at P, K_3 and K_1 at Q, and K_1 and K_2 at R.Lines PQ and PR cut K_1 again at S and T respectively. Lines SR and TQ cut K_2 and K_3 again at U and V. Prove that points P, U, V are collinear.
- 3. The edges of a cube are numbered 1 through 12.
 - (a) Prove that for any such numbering there exist at least eight triples of integers (i, j, k) with $1 \le i < j < k \le 12$ such that the edges assigned numbers i, j, k are consecutive segments of a polygonal line.
 - (b) Give an example of a numbering for which there are exactly eight such triples.

Second Day

- 4. Let be given positive integers *n* and *k*. Consider a chain of sets A_0, A_1, \ldots, A_k in which $A_0 = \{1, \ldots, n\}$ and, for each *i*, A_i is a randomly chosen subset of A_{i-1} (all choices are equiprobable). Show that the expected cardinality of A_k is $n/2^k$.
- 5. The pairwise equal circles of equal radius *a* lie on a hemisphere of radius *r*. Compute the radius of a fourth circle on the same sphere which is tangent to the three given circles.
- 6. Let a, b, c, d be positive numbers. Prove the inequality

$$\sqrt{\frac{ab+ac+ad+bc+bd+cd}{6}} \ge \sqrt[3]{\frac{abc+abd+acd+bcd}{4}}$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1