35-th Polish Mathematical Olympiad 1983/84

Third Round April 6-7, 1984

First Day

- 1. Find the number of all real functions f which map the sum of n elements into the sum of their images, such that f^{n-1} is a constant function and f^{n-2} is not. Here $f^0(x) = x$ and $f^k = f \circ f^{k-1}$ for $k \ge 1$.
- 2. Let n be a positive integer. For all $i, j \in \{1, 2, ..., n\}$ define $a_{j,i} = 1$ if j = i and $a_{j,i} = 0$ otherwise. Also, for i = n + 1, ..., 2n and j = 1, ..., n define $a_{j,i} = -\frac{1}{n}$. Prove that for any permutation p of the set $\{1, 2, ..., 2n\}$ the following inequality holds:

 $\sum_{j=1}^n \left| \sum_{k=1}^n a_{j,p(k)} \right| \ge \frac{n}{2}.$

3. Let W be a regular octahedron and O be its center. In a plane P containing O circles $k_1(O,r_1)$ and $k_2(O,r_2)$ are chosen so that $k_1 \subset P \cap W \subset k_2$. Prove that $\frac{r_1}{r_2} \leq \frac{\sqrt{3}}{2}$.

Second Day

- 4. A coin is tossed n times, and the outcome is written in the form $(a_1, a_2, ..., a_n)$, where $a_i = 1$ or 2 depending on whether the result of the i-th toss is the head or the tail, respectively. Set $b_j = a_1 + a_2 + \cdots + a_j$ for j = 1, 2, ..., n, and let p(n) be the probability that the sequence $b_1, b_2, ..., b_n$ contains the number n. Express p(n) in terms of p(n-1) and p(n-2).
- 5. A regular hexagon of side 1 is covered by six unit disks. Prove that none of the vertices of the hexagon is covered by two (or more) discs.
- 6. Cities P_1, \ldots, P_{1025} are connected to each other by airlines A_1, \ldots, A_{10} so that for any two distinct cities P_k and P_m there is an airline offering a direct flight between them. Prove that one of the airlines can offer a round trip with an odd number of flights.

