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Third Round

First Day

1. Let be given a set{r1,r2, . . . ,rk} of natural numbers that give distinct remainders
when divided by a natural numberm. Prove that ifk > m/2, then for every
integern there exist indicesi and j (not necessarily distinct) such thatri + r j −n
is divisible bym.

2. Prove that the four lines, joining the vertices of a tetrahedron with the incenters
of the opposite faces, have a common point if and only if the three products of
the lengths of opposite sides are equal.

3. An experiment consists of performingn independent tests. Thei-th test is suc-
cessful with the probability equal topi. Let rk be the probability that exactlyk
tests succeed. Prove that
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Second Day

4. Let A > 1 andB > 1 be real numbers and(xn) be a sequence of numbers in the
interval[1,AB]. Prove that there exists a sequence(yn) of numbers in the interval
[1,A] such that
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for all m,n = 1,2, . . .

5. Prove that the product of the sides of a quadrilateral inscribed in a circle with
radius 1 does not exceed 4.

6. A polynomialw of degreen > 1 hasn distinct zerosx1,x2, . . . ,xn. Prove that:
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