Second Round

February 23-24, 2001

First Day

- 1. Let k, n > 1 be integers such that the number p = 2k 1 is prime. Prove that, if the number $\binom{n}{2} \binom{k}{2}$ is divisible by p, then it is divisible by p^2 .
- 2. Points A, B, C with AB < BC lie in this order on a line. Let ABDE be a square. The circle with diameter AC intersects the line DE at points P and Q with P between D and E. The lines AQ and BD intersect at R. Prove that DP = DR.
- 3. Let $n \ge 3$ be a positive integer. Prove that a polynomial of the form

$$x^{n} + a_{n-3}x^{n-3} + a_{n-4}x^{n-4} + \dots + a_{1}x + a_{0},$$

where at least one of the real coefficients $a_0, a_1, \ldots, a_{n-3}$ is nonzero, cannot have all real roots.

Second Day

- 4. Find all integers $n \ge 3$ for which the following statement is true: Any arithmetic progression a_1, \ldots, a_n with *n* terms for which $a_1 + 2a_2 + \cdots + na_n$ is rational contains at least one rational term.
- 5. In a triangle *ABC*, *I* is the incenter and *D* the intersection point of *AI* and *BC*. Show that AI + CD = AC if and only if $\angle B = 60^{\circ} + \frac{1}{3} \angle C$.
- 6. For a positive integer *n*, let A_n and B_n be the families of *n*-element subsets of $S_n = \{1, 2, ..., 2n\}$ with respectively even and odd sums of elements. Compute $|A_n| |B_n|$.

