The Niels Henrik Abel Contest 1999

Final Round - March 12, 1999

- 1. (a) Find a function f such that $f(t^2 + t + 1) = t$ for all real $t \ge 0$.
 - (b) If a, b, c, d, e are real numbers, prove the inequality

$$a^{2} + b^{2} + c^{2} + d^{2} > a(b+c+d+e).$$

- 2. (a) Find all integers m and n such that $2m^2 + n^2 = 2mn + 3n$.
 - (b) If a,b,c are positive integers such that $b \mid a^3$, $c \mid b^3$ and $a \mid c^3$, prove that $abc \mid (a+b+c)^{13}$.
- 3. An isosceles triangle ABC with AB = AC and $\angle A = 30^{\circ}$ is inscribed in a circle with center O. Point D lies on the shorter arc AC so that $\angle DOC = 30^{\circ}$, and point G lies on the shorter arc AB so that DG = AC and AG < BG. The line BG intersects AC and AB at E and E, respectively.
 - (a) Prove that triangle AFG is equilateral.
 - (b) Find the ratio between the areas of triangles AFE and ABC.
- 4. For every nonempty subset R of $S = \{1, 2, ..., 10\}$, we define the *alternating sum* A(R) as follows: If $r_1, r_2, ..., r_k$ are the elements of R in the increasing order, then $A(R) = r_k r_{k-1} + r_{k-2} \cdots + (-1)^{k-1} r_1$.
 - (a) Is it possible to partition S into two sets having the same alternating sum?
 - (b) Determine the sum $\sum_{R} A(R)$, where R runs over all nonempty subsets of S.

