## 14-th Nordic Mathematical Contest

## March 30, 2000

- 1. In how many ways can the number 2000 be written as a sum of three positive, not necessarily different integers? (The order of summands is irrelevant.)
- 2. The persons  $P_1, P_2, \ldots, P_n$  sit around a table in this order, and each one has a number of coins. Initially,  $P_1$  has one coin more than  $P_2$ ,  $P_2$  has one coin more than  $P_3$ , etc. Now  $P_1$  gives one coin to  $P_2$ , who in turn gives two coins to  $P_3$ , etc., up to  $P_n$  who gives *n* coins to  $P_1$ ; then  $P_1$  continues by giving n + 1 coins to  $P_2$ , etc. The transactions go on until someone has not enough coins to give away one coin more than he just received. After this process ends, it turns out that there are two neighbors at the table one of whom has five times as many coins as the other. Find the number of persons and the number of coins circulating around the table.
- 3. In the triangle *ABC*, the bisectors of angles *B* and *C* meet the opposite sides at *D* and *E*, respectively. The bisectors intersect at point *O* such that OD = OE. Prove that either  $\triangle ABC$  is isosceles or  $\angle A = 60^{\circ}$ .
- 4. A real function defined for  $0 \le x \le 1$  satisfies f(0) = 0, f(1) = 1, and

$$\frac{1}{2} \le \frac{f(x) - f(y)}{f(y) - f(z)} \le 2$$

whenever  $0 \le x < y < z \le 1$  and z - y = y - x. Show that  $\frac{1}{7} \le f\left(\frac{1}{3}\right) \le \frac{4}{7}$ .



The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com