10-th Nordic Mathematical Contest

March 11, 1996

- 1. Show that there exists a positive multiple of 1996 whose sum of digits is 1996.
- 2. Find all real numbers x such that $x^n + x^{-n}$ is an integer for all $n \in \mathbb{Z}$.
- 3. The circle with the altitude from A in a triangle ABC as a diameter intersects AB at D and AC at E. Prove that the circumcenter of $\triangle ABC$ lies on the line containing the altitude from A in triangle ADE.
- 4. Given a positive integer a, a function f from \mathbb{N} to \mathbb{R} satisfies f(a) = f(1995), f(a+1) = f(1996), f(a+2) = f(1997) and

$$f(n+a) = \frac{f(n)-1}{f(n)+1}$$
 for all $n \in \mathbb{N}$.

- (a) Prove that f(n+4a) = f(n) for all n.
- (b) Determine the smallest possible value of a.

