43-th Mongolian Mathematical Olympiad 2007

Final Round

Ulaanbaatar, May 5-11

Grade 11

First Day

- 1. Let *M* be the midpoint of the side *BC* of triangle *ABC*. The bisector of the exterior angle of point *A* intersects the side *BC* in *D*. Let the circumcircle of triangle *ADM* intersect the lines *AB* and *AC* in *E* and *F* respectively. If the midpoint of *EF* is *N*, prove that MN||AD.
- 2. For all $n \ge 2$, let a_n be the product of all coprime natural numbers less than n. Prove that

(a)
$$n|a_n+1 \Leftrightarrow n=2,4, p^{\alpha}, 2p^{\alpha}$$
.

(b) $n|a_n-1 \Leftrightarrow n \neq 2, 4, p^{\alpha}, 2p^{\alpha}$.

Here *p* is an odd prime number and $\alpha \in \mathbb{N}$.

3. Let *P* be a point outside of the triangle *ABC* in the plane of *ABC*. Prove that by using reflections S_{AB} , S_{AC} , and S_{BC} across the lines *AB*, *AC*, and *BC* one can shift point *P* in the triangle *ABC*.

Second Day

4. If $a, b, c \in \mathbb{R}$ and a, b, c > 0 prove that

$$\frac{a}{b} + \frac{b}{c} + \frac{c}{a} \ge 3\sqrt{\frac{a^2 + b^2 + c^2}{ab + bc + ca}}.$$

- 5. Given a $n \times n$ table with non-negative real entries such that the sums of entries in each column and row are equal, a player plays the following game: The step of the game consists of choosing *n* cells no two of which share a column or a row, and subtracting the same number from each of the entries of the *n* cells, provided that the resulting table has all non-negative entries. Prove that the player can change all entries to zeros.
- 6. Given a quadrilateral *ABCD* simultaneously inscribed and circumscribed, assume that none of his diagonals or sides is a diameter of the circumscribed circle. Let *P* be the intersection point of the external bisectors of the angles near *A* and *B*. Similarly, let *Q* be the intersection point of the external bisectors of the angles *C* and *D*. If *J* and *O* respectively are incenter and circumcenter of *ABCD* prove that *OJ* ⊥ *PQ*.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

Teachers – secondary level

First Day

- 1. Find the number of subsets of the set $\{1, 2, 3, ..., 5n\}$ such that the sum of the elements in each subset are divisible by 5.
- 2. Given 101 segments in a line, prove that there exist 11 segments meeting in 1 point or 11 segments such that every two of them are disjoint.
- 3. Let *p* be an ood prime number. Let *g* be primitive root modulo *p*. Find all the values of *p* such that the sets $A = \left\{k^2 + 1 : 1 \le k \le \frac{p-1}{2}\right\}$ and $B = \left\{g^m : 1 \le m \le \frac{p-1}{2}\right\}$ are equal modulo *p*.

Second Day

- 4. If $x, y, z \in \mathbb{N}$ and $xy = z^2 + 1$ prove that there exist integers a, b, c, d such that $x = a^2 + b^2$, $y = c^2 + d^2$, z = ac + bd.
- 5. Given a point *P* in the circumcircle ω of an equilateral triangle *ABC*, prove that the segments *PA*, *PB*, and *PC* form a triangle *T*. Let *R* be the radius of the circumcircle ω and let *d* be the distance between *P* and the circumcenter. Find the area of *T*.
- 6. Let $n = p_1^{\alpha_1} \cdots p_s^{\alpha_s} \ge 2$. If for any $\alpha \in \mathbb{N}$, $p_i 1 \nmid \alpha$, where $i = 1, 2, \ldots, s$, prove that $n \mid \sum_{\alpha \in \mathbb{Z}_n^*} a^{\alpha}$ where $\mathbb{Z}_n^* = \{a \in \mathbb{Z}_n : (a, n) = 1\}$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com