36-th Mongolian Mathematical Olympiad 2000

Final Round Sukhbaatar, May 1–6

ukilouului, Muy I

Grade 10

First Day

- 1. Let rad(k) denote the product of prime divisors of a natural number k (define rad(1) = 1). A sequence (a_n) is defined by setting a_1 arbitrarily, and $a_{n+1} = a_n + rad(a_n)$ for $n \ge 1$. Prove that the sequence (a_n) contains arithmetic progressions of arbitrary length.
- 2. Circles $\omega_1, \omega_2, \omega_3$ with centers O_1, O_2, O_3 , respectively, are externally tangent to each other. The circle ω_1 touches ω_2 at P_1 and ω_3 at P_2 . For any point *A* on ω_1, A_1 denotes the point symmetric to *A* with respect to O_1 . Show that the intersection points of AP_2 with ω_3, A_1P_3 with ω_2 , and AP_3 with A_1P_2 lie on a line.
- 3. A cube of side *n* is cut into n^3 unit cubes, and *m* of these cubes are marked so that the centers of any three marked cubes do not form a right-angled triangle with legs parallel to sides of the cube. Find the maximum possible value of *m*.

Second Day

4. Suppose that a function $f : \mathbb{R} \to \mathbb{R}$ satisfies the following conditions:

(i)
$$|f(a) - f(b)| \le |a - b|$$
 for all $a, b \in \mathbb{R}$;

(ii) f(f(f(0))) = 0.

Prove that f(0) = 0.

5. Given a natural number *n*, find the number of quadruples (x, y, u, v) of integers with $1 \le x, y, u, v \le n$ satisfying the following inequalities:

$$1 \le v + x - y \le n,$$

$$1 \le x + y - u \le n,$$

$$1 \le u + v - y \le n,$$

$$1 \le v + x - u \le n.$$

6. In a triangle *ABC*, the angle bisector at *A*,*B*,*C* meet the opposite sides at A_1, B_1, C_1 , respectively. Prove that if the quadrilateral $BA_1B_1C_1$ is cyclic, then

$$\frac{AC}{AB+BC} = \frac{AB}{AC+CB} + \frac{BC}{BA+AC}.$$

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1

Teachers – secondary level

First Day

- 1. Find all integers that can be written in the form $\frac{(x+y+z)^2}{xyz}$, where x, y, z are positive integers.
- 2. Let $n \ge 2$. For any two *n*-vectors $\vec{x} = (x_1, \dots, x_n)$ and $\vec{y} = (y_1, \dots, y_n)$, we define

$$f(\vec{x}, \vec{y}) = x_1 \overline{y_1} - \sum_{i=2}^n x_i \overline{y_i}.$$

Prove that if $f(\vec{x}, \vec{x}) \ge 0$ and $f(\vec{y}, \vec{y}) \ge 0$, then $|f(\vec{x}, \vec{y})|^2 \ge f(\vec{x}, \vec{x})f(\vec{y}, \vec{y})$.

3. Two points *A* and *B* move around two different circles in the plane with the same angular velocity. Suppose that there is a point *C* which is equidistant from *A* and *B* at every moment. Prove that, at some moment, *A* and *B* will coincide.

Second Day

- 4. In a country with *n* towns, the distance between the towns numbered *i* and *j* is denoted by x_{ij} . Suppose that the total length of every cyclic route which passes through every town exactly once is the same. Prove that there exist numbers a_i, b_i (i = 1, ..., n) such that $x_{ij} = a_i + b_j$ for all distinct *i*, *j*.
- 5. Let m, n, k be positive integers with $m \ge 2$ and $k \ge \log_2(m-1)$. Prove that

$$\prod_{s=1}^{n} \frac{ms-1}{ms} < \sqrt[2^{k+1}]{\frac{1}{2n+1}}.$$

6. Given distinct prime numbers p_1, \ldots, p_s and a positive integer *n*, find the number of positive integers not exceeding *n* that are divisible by exactly one of the p_i .

www.imomath.com

2