3-rd Macedonian Mathematical Olympiad 1996

- 1. Let *ABCD* be a parallelogram which is not a rectangle and *E* be the point in its plane such that $AE \perp AB$ and $CE \perp CB$. Prove that $\angle DEA = \angle CEB$.
- 2. Let \mathscr{P} be the set of all polygons in the plane and let $M : \mathscr{P} \to \mathbb{R}$ be a mapping that satisfies:
 - (i) $M(P) \ge 0$ for each polygon *P*;
 - (ii) $M(P) = x^2$ if *P* is an equilateral triangle of side *x*;
 - (iii) If a polygon P is partitioned into polygons S and T, then M(P) = M(S) + M(T);
 - (iv) If polygons *P* and *T* are congruent, then M(P) = M(T).

Determine M(P) if P is a rectangle with edges x and y.

3. Prove that if α, β, γ are angles of a triangle, then

$$\frac{1}{\sin\alpha} + \frac{1}{\sin\beta} \ge \frac{8}{3 + 2\cos\gamma}.$$

- 4. A polygon is called *good* if it satisfies the following conditions:
 - (i) All its angles are in $(0, \pi)$ or in $(\pi, 2\pi)$;
 - (ii) It is not self-intersecing;
 - (iii) For any three sides, two are parallel and equal.

Find all *n* for which there exists a good *n*-gon.

5. Find the greatest *n* for which there exist *n* lines in space, passing through a single point, such that any two of them form the same angle.

