
3-rd Macedonian Mathematical Olympiad 1996

1. Let ABCD be a parallelogram which is not a rectangle andE be the point in its
plane such thatAE ⊥ AB andCE ⊥CB. Prove that∠DEA = ∠CEB.

2. LetP be the set of all polygons in the plane and letM : P → R be a mapping
that satisfies:

(i) M(P) ≥ 0 for each polygonP;

(ii) M(P) = x2 if P is an equilateral triangle of sidex;

(iii) If a polygon P is partitioned into polygonsS andT , thenM(P) = M(S)+
M(T );

(iv) If polygonsP andT are congruent, thenM(P) = M(T ).

DetermineM(P) if P is a rectangle with edgesx andy.

3. Prove that ifα,β ,γ are angles of a triangle, then
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+
1
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≥

8
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.

4. A polygon is calledgood if it satisfies the following conditions:

(i) All its angles are in(0,π) or in (π ,2π);

(ii) It is not self-intersecing;

(iii) For any three sides, two are parallel and equal.

Find all n for which there exists a goodn-gon.

5. Find the greatestn for which there existn lines in space, passing through a single
point, such that any two of them form the same angle.
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