8-th Macedonian Mathematical Olympiad 2001

- 1. Prove that if *m* and *s* are integers with $ms = 2000^{2001}$, then the equation $mx^2 sy^2 = 3$ has no integer solutions.
- 2. Does there exist a function $f : \mathbb{N} \to \mathbb{N}$ such that

$$f(f(n-1)) = f(n+1) - f(n)$$
 for all $n \ge 2$?

- 3. Let *ABC* be a scalene triangle and *k* be its circumcircle. Let t_A, t_B, t_C be the tangents to *k* at *A*, *B*, *C*, respectively. Prove that points $AB \cap t_C$, $AC \cap t_B$, and $BC \cap t_A$ exist, and that they are collinear.
- 4. Let Ω be a family of subsets of *M* such that:
 - (i) If $|A \cap B| \ge 2$ for $A, B \in \Omega$, then A = B;
 - (ii) There exist different subsets $A, B, C \in \Omega$ with $|A \cap B \cap C| = 1$;
 - (iii) For every $A \in \Omega$ and $a \in M \setminus A$, there is a unique $B \in \Omega$ such that $a \in B$ and $A \cap B = \emptyset$.

1

Prove that there are numbers p and s such that:

- (1) Each $a \in M$ is contained in exactly p sets in Ω ;
- (2) |A| = s for all $A \in \Omega$;
- (3) $s+1 \ge p$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com