8-th Korean Mathematical Olympiad 1994/95

Final Round
First Day — April 15, 1995

1. Show that for any positive integer, there exist integera, b satisfying

1+/2

lal,lbj<m, O<a+bv2< .
m-+ 2

2. LetA denote the set of nonnegative integers. Find all function8 — A satis-
fying the following two conditions:

() 2f(m?+n?) = f(m)?+ f(n)? forall mn € A
(i) f(mP) > f(n?) for anym n < Awith m>n.

3. LetABChbe an equilateral triangle of sidel be a point orBC, andr1,r, be the
inradii of trianglesABD andADC. Expressr» in terms ofp = BD and find the
maximum ofrqro.

Second Day — April 16, 1995

4. LetO andR be the circumcenter and circumradius of a trianyRC, and letP
be any point in the plane of the triangle. The perpendic\Rd4sPB,, PC; are
dropped fromP to BC,CA AB. ExpressSag,c, /Sasc in terms ofR andd = OP,
whereSxyzis the area ofAXY Z

5. Leta,b be integers ang be a prime number such that:

(i) pis the greatest common divisor afandb;
(i) p? dividesa.

Prove that the polynomial*2 + ax™*1 4 bx"+a+ b cannot be decomposed into
the product of two polynomials with integer coefficients aledjree greater than
1.

6. Letm,n be positive integers with £ n < m. A box is locked with several pad-
locks which must all be opened to open the box, and which ai [thfferent
keys. The keys are distributed amamgeople. Suppose that among these peo-
ple, non can open the box, but amy 1 can open it. Find the smallest possible
number of locks and then the total number of keys for which this isgilale.
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