15-th Korean Mathematical Olympiad 2002

Final Round

First Day - April 13, 2002

1. For a prime p of the form 12k+1 and $\mathbb{Z}_p = \{0,1,2,\ldots,p-1\}$, define

$$E_p = \{(a,b) \in \mathbb{Z}_p^2 \mid p \nmid 4a^3 + 27b^2\}.$$

We say that elements (a,b) and (a',b') of E_p are *equivalent* if there is a nonzero $c \in \mathbb{Z}_p$ such that $p \mid a' - ac^4$ and $p \mid b' - bc^6$. Find the maximal number of inequivalent elements of E_p .

2. Find all functions $f : \mathbb{R} \to \mathbb{R}$ such that for all $x \in \mathbb{R}$ and $y \in f(\mathbb{R})$

$$f(x-y) = f(x) + xy + f(y).$$

- 3. The following facts are known on a mathematical contest:
 - (i) There were $n \ge 4$ problems;
 - (ii) Each problem was solved by exactly four contestants;
 - (iii) For any two problems there is exactly one contestant who solved both problems.

Assuming that there were at least 4n contestants, find the minimum value of n for which there always exists a contestant who solved all the problems.

- 4. For positive real numbers $a_1, \ldots, a_n, b_1, \ldots, b_n$ $(n \ge 3)$ with the b_i pairwise distinct, denote $S = a_1 + a_2 + \cdots + a_n$ and $T = b_1b_2\cdots b_n$.
 - (a) Let $f(x) = (x b_1)(x b_2) \cdots (x b_n) \sum_{j=1}^{n} \frac{a_j}{x b_j}$. Find the number of distinct real zeroes of the polynomial f(x).
 - (b) Prove that $\frac{1}{n-1} \sum_{j=1}^{n} \left(1 \frac{a_j}{S} \right) b_j > \left(\frac{T}{S} \sum_{j=1}^{n} \frac{a_j}{b_j} \right)^{\frac{1}{n-1}}.$
- 5. In an acute-angled triangle ABC, the altitude from A meets the circumcircle O at D. Let P be a point on O, and let Q be the foot of the perpendicular from P to AB. Prove that if Q is outside O and $2\angle QPB = \angle PBC$, then the points D, P, Q are collinear.
- 6. Let p_n denote the n-th smallest prime ($p_1 = 2$, $p_2 = 3$, $p_3 = 5$, etc.).

- (a) For a given $n \ge 10$, let r be the smallest integer such that $p_r > n-3$, and let $N_s = sp_1p_2\cdots p_{r-1}-1$ for $s=1,2,\ldots,p_r$. Show that there exists j, $1 \le j \le p_r$, such that none of p_1,p_2,\ldots,p_n divides N_j .
- (b) Using the result of (a), find all m for which $p_{m+1}^2 < p_1 p_2 \cdots p_m$.

