Final Round

First Day – April 14, 2001

- 1. Given an odd prime p, find all functions $f : \mathbb{Z} \to \mathbb{Z}$ that satisfy:
 - (i) If $m \equiv n \pmod{p}$, then f(m) = f(n);
 - (ii) f(mn) = f(m)f(n) for all $m, n \in \mathbb{Z}$.
- 2. Let *P* be a given point inside a convex quadrilateral $O_1O_2O_3O_4$. For each i = 1, 2, 3, 4, consider the lines *l* that pass through *P* and meet the rays O_iO_{i-1} and O_iO_{i+1} (where $O_0 = O_4$ and $O_5 = O_1$) at distinct points $A_i(l)$ and $B_i(l)$, respectively. Denote $f_i(l) = PA_i(l) \cdot PB_i(l)$. Among all such lines *l*, let l_i be the one that minimizes f_i . Show that if $l_1 = l_3$ and $l_2 = l_4$, then the quadrilateral $O_1O_2O_3O_4$ is a parallelogram.
- 3. Let x_1, x_2, \dots, x_n and y_1, y_2, \dots, y_n be arbitrary real numbers satisfying $x_1^2 + x_2^2 + \dots + x_n^2 = y_1^2 + y_2^2 + \dots + y_n^2 = 1$. Prove that

$$(x_1y_2 - x_2y_1)^2 \le 2 \left| 1 - \sum_{k=1}^n x_k y_k \right|$$

and find all cases of equality.

- 4. For given positive integers *n* and *N*, let P_n be the set of all polynomials $f(x) = a_0 + a_1x + \dots + a_nx^n$ with integer coefficients such that:
 - (i) $|a_j| \le N$ for j = 0, 1, ..., n;
 - (ii) The set $\{j \mid a_j = N\}$ has at most two elements.

Find the number of elements of the set $\{f(2N) \mid f(x) \in P_n\}$.

- 5. In a triangle *ABC* with $\angle B < 45^\circ$, *D* is a point on *BC* such that the incenter of $\triangle ABD$ coincides with the circumcenter *O* of $\triangle ABC$. Let *P* be the intersection point of the tangent lines to the circumcircle *O'* of $\triangle AOC$ at points *A* and *C*. The lines *AD* and *CO* meet at *Q*. The tangent to *O'* at *O* meets *PQ* at *X*. Prove that XO = XD.
- 6. For a positive integer $n \ge 5$, let a_i, b_i (i = 1, 2, ..., n) be integers satisfying the following two conditions:
 - (i) The pairs (a_i, b_i) are distinct for i = 1, ..., n;
 - (ii) $|a_1b_2 a_2b_1| = |a_2b_3 a_3b_2| = \dots = |a_nb_1 a_1b_n| = 1.$

Prove that there exist indices *i*, *j* such that 1 < |i - j| < n - 1 and $|a_i b_j - a_j b_i| = 1$.

The IMO Compendium Group, D. Djukić, V. Janković, I. Matić, N. Petrović www.imomath.com

1